Bank Competition
In Concentrated Markets

Sherrill Shaffer*

Between 1985 and 1991, more than 4000 mergers occurred among U.S. commercial banks, a rate of consolidation more than four times greater than in previous decades. During the same period, consolidation transferred control of more than $350 billion in financial assets from smaller acquired banking institutions to the 100 largest U.S. depository institutions.1

Deregulation of deposit interest rates in the early 1980s opened the door for intensified competition among banks while, at the same time, foreign banks and nonbanking financial firms began to compete more vigorously for traditional banking business. These forces prompted many banks to merge as a way of improving their diversification, efficiency, or possibly market power.2 Over that period, dozens of studies have found evidence that banks smaller than some "minimum efficient scale" suffer intrinsically higher costs, while other studies have found evidence that some banks do not minimize their costs; mergers could potentially reduce the costs of either type of bank. Whether some banks merge in order to enhance their dominance of the market has not been directly studied.

2
historical legal restrictions on intrastate branching and interstate bank holding company affiliation have been progressively weakened, expanding the opportunities for consolidation. Most industry analysts and economists expect the trend of accelerated consolidation to continue unabated during the next several years, although many small and medium-size banks should remain.

This consolidation has renewed fears of market concentration and monopoly power in the banking industry. Policymakers are suspicious of concentration—a market structure in which only a few banks supply most of the deposit and loan services demanded by the market—and seek to limit it because they believe that it enables banks to exercise monopoly power, thereby harming depositors and borrowers. Such harm would theoretically take the form of less favorable prices (for example, higher interest rates on loans and lower interest rates on deposits) and a lower volume of services provided (including less available credit).

However, new theoretical and empirical evidence suggests that the link between concentration and monopoly power is not uniform. Depending on various factors, competitive outcomes might be observed in concentrated markets as well as unconcentrated ones while, under different conditions, monopoly power might be sustained in unconcentrated markets as well as concentrated ones. Therefore, policy toward bank consolidation cannot rely solely on structural measures.

To review the evidence, let's start with the traditional structure-conduct-performance (SCP) hypothesis.

THEORETICAL BASIS OF SCP

The original formulation of the SCP hypothesis (Mason, 1939; Bain, 1951) simply asserted that fewer firms in a market (that is, a concentrated structure) will generally lead to less competitive conduct (in terms of higher prices and reduced output levels) and less competitive performance (higher ratios of price to cost and higher profits at the expense of lower consumer welfare). The U.S. Department of Justice has long adhered to this view by maintaining an explicit policy of challenging mergers between rival firms (whether between banks or in other industries) that result in concentration levels above certain thresholds. Federal bank regulators (the Comptroller of the Currency, the Federal Deposit Insurance Corporation, and the Federal Reserve) also apply these guidelines when reviewing applications for bank mergers, as described by Holder (1993).

Beginning around 1970, a more rigorous theoretical basis for the SCP hypothesis was sought. Work by Cowling and Waterson (1976), Dansby and Willig (1979), Novshek (1980), and others demonstrated that there are some market conditions under which the hypothesis is valid. For example, if each firm chooses its output level so that its rivals will not vary their output levels in response, and if firms set a target output level rather than price per unit, firms' profitability will depend on the sum of squared market shares of all firms in the market. This measure of market structure is known as the Herfindahl-Hirschman index of concentration (HHI). Similarly, Saving (1976) has shown that a dominant cartel of (say) four firms, plus a competitive fringe of smaller firms, generates a fixed relationship between (in this case) the combined market share of the four largest firms in the market and firms' perfor-

3 Supplementary institutional information, such as the likelihood of entry, may be taken into account in determining market power, and mitigating factors may also be considered where market power is found. Such factors could include any public benefits of a bank merger, such as serving the "convenience and needs" of the local community or providing services at lower cost. Willig (1991) and Holder (1993) discuss these supplementary factors.

4 Stigler (1964) represents an earlier attempt to relate the HH1 to performance measures.
nance. Under the conditions postulated by these studies, an antitrust policy could rely on an appropriate structural formula.

Counterexamples. However, both newer and older economic theory has challenged the realism of these specialized conditions and has also shown that the uniform linkage between structural concentration and market performance can disappear under alternative conditions. At one extreme, Baumol and others (1982) have shown that competitive pricing (that is, a price that just covers the costs of production plus a normal rate of return on capital) could result for any number of firms in a market if an entering firm can attract customers by charging a lower price and could recover any cost of entry while abandoning the market if older firms retaliate by undercutting in turn. A similar outcome is predicted by the nineteenth-century analysis of Bertrand (1883), regardless of the ease of entry or exit, whenever firms produce identical products and try to maximize profits by setting their prices rather than by setting targets for how much they would like to sell: Trolle (1988, p. 210) summarizes this theory.

At the other extreme, Friedman (1971) and others have shown that even large numbers of firms in a market may tacitly collude to set high prices if they think ahead, since the temporary profits one firm could gain by underpricing its rivals today could be more than offset by subsequent losses if its rivals retaliate by cutting their prices in turn. Other recent models, such as those by Rotemberg and Saloner (1986) and Worthington (1990), predict patterns of conduct and pricing that are intermediate between perfectly competitive and monopolistic, depending on such factors as interest rates and the cost of adjusting size or capacity. Even when market structure can be shown to influence this sort of pricing, as in Worthington's analysis, the pattern of that linkage may vary, according to some factors that are not easily measured, such as costs of adjustment. Theoretical and empirical work by Mesler (1987, 1992) further suggests that, when banks compete against each other in more than one market, the actual pattern of conduct may be more competitive than the structure of the individual markets might indicate.

To complicate the picture still more, surveys of firms' managers over several decades have found that most claim to set prices at some fixed percentage above cost, using a simple rule of thumb that falls outside the strategies typically analyzed within the SCP framework. Of course, one must view such surveys with caution, since firms may be reluctant to reveal details of their actual pricing strategies; nevertheless, Naish (1990) has shown that such a simple pricing rule—often called "cost-plus" pricing—makes sense when firms find it costly to acquire market information or to adjust their plans. One implication of cost-plus pricing is that structure would have no predictable impact on the level of prices or profits.

One implication of cost-plus pricing is that structure would have no predictable impact on the level of prices or profits.

5See Hart and Hüb (1939), Skinner (1970), Shipley (1980), and Noggle (1987). Such a simple pricing rule would ignore many important factors, possibly including market structure.
These studies, together with several others not discussed here, demonstrate at a minimum that economic theory alone cannot determine whether the degree of firms’ monopoly power is uniformly linked to market structure. Rather, we must turn to empirical studies to address that question.

Two basic types of empirical studies are relevant here: one using an older method that measures statistical correlations between market concentration and measures of performance, and one using newer methods that attempt to estimate patterns of firm conduct directly. Both types of studies have been conducted across a variety of industries, and many focus on the banking industry in particular.

SCP-STYLE EMPirical Studies

Economists and policymakers would like to be able to look at a single number (such as profitability, price level, bank size, or number of banks in the market) for a bank or for a market, compare it with the value that would occur in a perfectly competitive market, and conclude something about the degree of competition or monopoly power in the bank or market in question. Unfortunately, it is very difficult to establish a reliable index for this purpose. Even though market participants rely on measures of profits and prices in making business decisions, it is not an easy matter to use these numbers to assess competition in a market. Reported profit rates are influenced by accounting practices, tax rules, and other variables; price levels must be compared with costs to be meaningful; and, as indicated above, structural indices need not correspond to the degree of monopoly power.

To assess whether structural indices tend to be associated with monopoly power in practice, many previous studies have measured the historical relationship between profit rates and market concentration or between price levels and concentration. Such studies have a long tradition and continue to be undertaken.

Profit-Concentration Studies. Gilbert (1984) reviews several dozen profit-concentration studies, noting that they present a mixed set of results in aggregate and tend to suffer from various methodological flaws. A prominent shortcoming of conventional profit-concentration studies is that they cannot distinguish between market power and efficiency as a source of concentration and profitability (Demsetz, 1973; Peltzman, 1977). Economic theory tells us that a firm that can deliver a superior product or operate at a lower cost will drive its rivals out of a competitive market unless they are able to entice the successful firm. Such superiority would therefore show up as a combination of high profitability and large market share for the leading bank(s)—producing a more concentrated market—precisely in those markets that are competitive.

Two possibilities then arise. Either other firms (perhaps new firms) can eventually imitate the efficient firm’s success, driving the price down until all the efficient firms just break even and all inefficient firms have been forced out of the market. Or if the extra efficiency results from a unique factor that others cannot replicate, the cost and profit differentials may persist, but in a market where all firms set
prices in a competitive fashion, there would be no way of further improving the use of resources. In either case, traditional profit-concentration studies that fail to test for cost differences are incapable of determining whether society would benefit from a public policy of restricting market concentration.

More recent studies have tried to fix this flaw. Smirlock (1985), Berger (1991), and others attempt to control statistically for some aspects of efficiency. They find that the linkage between concentration and profitability largely disappears in the presence of this correction. Evanoff and Foxlee (1988) find evidence that some profit-concentration linkage may persist in markets with substantial barriers to entry, after correcting for efficiency. In general, such studies do not entirely rule out structure as a contributing factor to monopoly, but they do establish that its influence is at most very limited (Berger and Humphrey, 1992).

Price-Concentration Studies. Other studies have focused instead on the correlation between concentration and price levels. Berger and Hannan (1989), Calem and Carlino (1991), and Hannan (1991a) all find some evidence that high market concentration is correlated with prices that are unfavorable to the consumer. These studies are less likely to confuse market power with efficiency because any extra efficiency among leading firms in a competitive market would tend to show up as lower, not higher, prices. However, Calem and Carlino (1991) found evidence of some monopoly power in deposit rates even in unconcentrated markets, contrary to the predictions of the SCP paradigm. In addition, Berger (1991) examined the price-concentration relationship that remains after efficiency is taken into account, concluding that “SCP may have some validity in deposit markets, but not in loan markets” (p. 25). Moreover, price-concentration studies do not fully control for differences in costs across banks and therefore cannot prove the existence of market power.

Market Definition. Common to both profit-concentration studies and price-concentration studies is the further difficulty of identifying the true geographic market, which determines the measured level of concentration (Whitehead, 1980; Jackson, 1992; Shaffer, 1992). This problem is especially severe in a multiproduct industry such as banking: the market for large commercial loans and large certificates of deposit is not geographically restricted, whereas small-business borrowers and most retail depositors are more locally limited (Elliehausen and Wolkert, 1990; Jackson, 1992). And many banks operate in several geographic markets simultaneously.

Weiss (1989) reviews additional profit-concentration studies in banking that span 49 different data sets. A minority of these studies support the SCP hypothesis.

Some studies, such as Berger and Hannan (1989) and Calem and Carlino (1992), include a bank wage rate as a partial measure of cost. However, any study that fully controls for costs (for example, by including an explicit cost function) would be implicitly measuring the profitability of banks and therefore be subject to all the criticisms of profit-concentration studies discussed above.
making it difficult to identify prices or profitability for an individual market. Competition from nonbanking firms in some product lines further complicates the task of delineating the true market shares, as does the question of proper aggregation or disaggregation of the various products.

Thus, like modern economic theory, SCP-style empirical studies have had mixed results. The most sophisticated of these studies have tended to find little connection between concentration and monopoly power, and none of these studies may be regarded as definitive. Therefore, a different empirical approach is needed to assess the link between market structure and competition. A promising alternative is found in the so-called new industrial organization (IO) literature.

NEW INDUSTRIAL ORGANIZATION EMPIRICAL STUDIES

This new IO literature actually dates back nearly 20 years, though its application to the banking industry has evolved more recently. Several methods appear in these studies, most relying on some combination of the notions that banks seek profits or that banking markets are in equilibrium. Two primary techniques will be discussed here, the Rosse-Panzar test and the markup test.21

The Rosse-Panzar Test. This test relies on the fact that an individual bank will price differently in response to a change in its costs, in a way that depends on whether the bank enjoys some monopoly power or instead is operating in a competitive market. The various possible pricing strategies have definable implications for changes in the bank's gross revenue.

If a bank has monopoly power and sets prices so as to maximize profits, it will choose prices such that its gross revenue responds in the opposite direction as a change in unit costs. For example, consider a proportional increase in all input prices (and hence in unit costs) that causes a bank to choose a smaller size. When it shrinks, it reduces its total costs. But the shrinkage must lead to reduced revenue as well. (Suppose, to the contrary, revenue increases or stays the same as output shrinks; then profits would increase also because total costs fall as output shrinks. But this means the bank could have earned higher profits by shrinking even without a change in input prices.) Therefore, the increase in unit costs leads to a decrease in revenue.

If a market is perfectly competitive, on the other hand, the industry's gross revenue could either rise or fall, depending on demand factors, but banks' entry or exit would eventually force each surviving bank's gross revenue to change in the same direction as its unit costs. For example, if unit costs rise, all banks would suffer losses at their original prices and must increase prices (or reduce their deposit interest rates) to survive; some banks may fail or be forced to merge in the process of this adjustment. Conversely, if unit costs fall, banks would earn excess profits at their original prices, so competition would force prices down until they merely cover the new costs. If we saw a technique, measuring asymmetric price rigidity as a function of market concentration, postulates that market power would lead to slower or less frequent adjustments in favor of the consumer, but faster or more frequent adjustments in the bank's favor. Hamann and Berger (1991) and Neumark and Sharpe (1992) find evidence of this aspect of consumer deposit pricing.

21Both tests are discussed in more detail by Frensham (1989). A third technique, Tobin's "q" test, measures the ratio of a firm's market value to its book value (Smith, Leib, and others, 1984). If this ratio exceeds 1, the firm is worth more than its assets. A common assumption has been that market power would be the underlying cause of such an excess; however, Spiller (1985) shows that systematic risk and efficiency can theoretically affect this ratio, potentially confusing the measurement of market power. Likewise, Anghino (1992) presents evidence that efficiency, rather than market power, may be the true cause of values of q greater than 1, at least in the banking industry. A fourth
Several studies to date have applied this technique to banks (Table 1). One striking feature of these studies is the preponderance of competitive findings—even though the technique itself is biased against such findings and even though some of the markets examined in these studies (such as Canadian banking, dominated by half a dozen nationwide banks; or Fulton County, Pennsylvania, which contains only two banks) are highly concentrated. Taken together, these results suggest that competitive performance at the bankwide level is attainable with relatively few banks, although one study by Hannon and Liang (1993) finds that local market power may exist in some individual product lines such as money market deposit accounts.

The Markup Test. A second technique involves using historical data to estimate market demand curves, which indicate the amount demanded at each price, and banks’ marginal cost curves, which indicate the amount it costs to produce each additional unit of output. These estimates can be combined in a way that determines where along the range between the competitive and monopolistic extremes the actual markup of price over marginal cost lies. Markups near zero indicate active competition, whereas markups near the monopolistic value indicate substantial market power.

One advantage of this test is that it can pinpoint the degree of competition in a more precise way than can the Rosse-Panzar test. For example, to determine whether a market is competitive requires knowledge of the market’s demand function, which is often difficult to estimate. The markup test, on the other hand, can be applied to any market, regardless of the availability of demand data. In addition, the markup test is less sensitive to measurement error than the Rosse-Panzar test, which relies on data from a single point in time. Therefore, the markup test is a more reliable indicator of market structure and performance.
example, it allows us to measure actual market behavior in terms of an index that ranges from 0 for perfect competition to 1 for monopoly pricing.

This test also is not subject to the same sort of anticompetitive bias that plagues the Rosse-Panzar test under certain conditions, through other conditions can cause a similar bias. For instance, the test would overstate the degree of monopoly power if applied to only a subset of banks in a market (Shaffer, 1993b). To avoid this possibility, the investigator must make sure that the sample of banks studied spans at least one full geographic market. However, the remedy is fairly simple, as there is no bias if the sample is defined so broadly as to include several markets: then the test would show the average degree of monopoly power across the markets—not enough to evaluate a single-market merger, but enough to assess the general validity of structural indices or the overall degree of competition in the banking industry. Therefore, if the sample is defined broadly enough, a finding of market power by this test is more likely to be genuine, rather than a mere reflection of some other condition, than when using the Rosse-Panzar test.14

Several studies have applied the markup test to banking (Table 2). The results support the Rosse-Panzar studies in suggesting that

*Used a technique very similar to Rosse-Panzar.
TABLE 2

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaffer (1989)</td>
<td>U.S. aggregate, 1941-83</td>
<td>competitive</td>
</tr>
<tr>
<td>Shaffer (1993a)</td>
<td>Canadian aggregate, 1965-89</td>
<td>competitive</td>
</tr>
<tr>
<td>Shaffer (1993b)</td>
<td>15 developed countries, 1979-91</td>
<td>market power in five countries; competitive in the most concentrated countries</td>
</tr>
<tr>
<td>Shaffer and DiSalvo (1994)</td>
<td>Fulton County duopoly, 1970-86</td>
<td>nearly competitive</td>
</tr>
</tbody>
</table>

competitive performance can result on a bankwide level from relatively few banks. The two techniques together form a way of cross-checking the results from either test alone, as was done in Shaffer and DiSalvo (1994) or as can be done for Canadian banking by comparing the Rosse-Panzar study by Nathan and Neave (1989) with the markup test by Shaffer (1993a).

POLICY IMPLICATIONS

Modern economic theory does not support a uniformly restrictive public policy toward market structure, either in the banking industry or in general. Rather, it implies that policies regarding market structure need to be grounded in empirical research, recognizing that the degree of competition in a market may not be systematically linked to market structure.

SCP-style empirical studies have given mixed results as a whole for banking. Further, among those studies that appear to show a link between structure and conduct or performance, most have been recognized as methodologically flawed, rendering their findings unsuitable as a basis of public policy. Studies that addressed these methodological problems provide much more limited support for a link between structure and the degree of competition in banking markets.

The new industrial organization style of empirical studies has a stronger conceptual understanding, offers a variety of techniques that allow results to be cross-checked, and has given more consistent results for banking. The results generally suggest that most U.S. and Canadian banking markets behave quite competitively at the bankwide level, even where highly concentrated; this means that regulatory constraints on mergers and acquisitions are not always necessary to sustain competitive outcomes. There is also some evidence that with respect to certain individual product lines, such as consumer deposit accounts, banks may exhibit a degree of monopoly power in

11 Although the markup test cannot work properly with data from only one bank (unless it’s the only bank in the market), it can be applied to aggregate market data when individual bank data are unavailable. In fact, when aggregate data are used, this method also gives a useful estimate of excess capacity—positive or negative—in the market, relative to the competitive norm (Shaffer, 1993a,b). The same need to define the market broadly enough, as discussed above, arises whether aggregate data or bank-specific data are used.
unconcentrated as well as concentrated markets; this means that regulatory constraints on mergers and acquisitions are not always sufficient to attain competitive outcomes. Thus, the weight of recent evidence suggests that the SCP hypothesis does not adequately describe the banking industry.

However, the new IO style of studies cannot answer the important question of whether competitive conduct (where it is observed) is being sustained by the threat of antitrust action against objectionable pricing or other behavior, rather than being an intrinsic property of the markets. Thus, their results should not be interpreted as supporting repeal of all antitrust provisions; rather, they call into question the structure-based subset of antitrust policy, at least for the banking industry. An important implication of the new IO studies is that the current wave of consolidation in the banking industry—although it will likely increase concentration in some banking markets—will not necessarily lead to less competition in banking markets.

REFERENCES

REFERENCES

REFERENCES

The idea behind this test is to observe whether a bank's total revenue changes in the same or opposite direction as its input prices (such as wages, office rental rates, etc.). As the following example illustrates, changes in the same direction indicate a competitive market, whereas changes in the opposite direction tend to reflect some degree of market power. The test was developed by Rosse and Panzar (1977) (see also Panzar and Rosse 1987) and can be shown to be much more general than the simple example might suggest.

In a competitive market, as banks vie for customers, the selling price will eventually be driven down to the minimum average cost of production, and each bank will produce the asset quantity that minimizes its average cost. The bank's total revenue is the competitive price times its quantity. In the table below, average cost is originally lowest for a bank that produces $20 million in assets, and total revenue is initially $4 million (=$20 million times an average cost of $0.20 per dollar of assets), as shown in the left-hand "original revenue" column. If the bank's input prices fall, the bank's average cost curve may shift down to resemble the right-hand average cost column; the efficient size remains at $20 million, but total revenue declines to $3.8 million (=$20 million times $0.19 per dollar of assets), since the price is driven down by competitive forces—perhaps involving the entry of additional banks into the market—to match the new lower average cost. Here, total revenue changes in the same direction as costs. (The same effect could also be illustrated by considering an increase in costs.)

<table>
<thead>
<tr>
<th>Bank</th>
<th>Original Average Cost per $ of Assets ($M)</th>
<th>Original Revenue ($M)</th>
<th>New Average Cost After Input Prices Fall</th>
<th>New Revenue ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$17M</td>
<td>$0.23</td>
<td>$3.91M</td>
<td>$0.22</td>
<td>$3.74M</td>
</tr>
<tr>
<td>18</td>
<td>$0.22</td>
<td>3.96</td>
<td>0.21</td>
<td>3.78</td>
</tr>
<tr>
<td>19</td>
<td>$0.21</td>
<td>3.99</td>
<td>0.20</td>
<td>3.80</td>
</tr>
<tr>
<td>20</td>
<td>$0.20</td>
<td>4.00</td>
<td>0.19</td>
<td>3.80</td>
</tr>
<tr>
<td>21</td>
<td>$0.21</td>
<td>4.41</td>
<td>0.20</td>
<td>4.20</td>
</tr>
</tbody>
</table>

If instead a bank facing these same original and new average cost figures has some market power—that is, if its market is not perfectly competitive—its selling price (the interest rate it charges on a loan) will vary with the amount it produces, and it may choose a smaller size to maximize its profits. The table below shows the price that such a bank can charge at different asset sizes, as well as the resulting profit levels (calculated by subtracting total costs, using the average cost figures shown in the table above, from total revenues).

<table>
<thead>
<tr>
<th>Bank</th>
<th>Orig. Avg. Cost per $ of Assets ($M)</th>
<th>Total Revenue ($M)</th>
<th>Total Cost ($M)</th>
<th>New Profit ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$17M</td>
<td>$0.23</td>
<td>$5.525M</td>
<td>$3.91M</td>
<td>$1.615M</td>
</tr>
<tr>
<td>18</td>
<td>$0.22</td>
<td>$5.58M</td>
<td>$3.96</td>
<td>$1.62</td>
</tr>
<tr>
<td>19</td>
<td>$0.21</td>
<td>$5.605M</td>
<td>$3.99</td>
<td>$1.63</td>
</tr>
<tr>
<td>20</td>
<td>$0.20</td>
<td>$5.63M</td>
<td>$4.00</td>
<td>$1.60</td>
</tr>
<tr>
<td>21</td>
<td>$0.21</td>
<td>$5.565M</td>
<td>$4.41</td>
<td>$1.155</td>
</tr>
</tbody>
</table>

Given the original costs, the bank can earn maximum profits by operating at a level of $18 million in assets, yielding a total revenue of $3.58 million and net profits of $0.62 million; in this protected market, competition does not force the bank to expand to the cost-minimizing size, and the bank can earn a positive profit. After the reduction in costs, the bank can earn maximum profits by operating at a level of $19 million in assets, yielding a total revenue of $3.63 million and profits of $1.80 million; no entry occurs to challenge these profits or to force the bank to reach the cost-minimizing size. Here, even though the asset quantity that minimizes average costs has not changed (i.e., $20 million), the bank with market power responds to a downward cost shift by expanding its output. As a result, its total revenue increases even though its average costs have fallen. Again, the same effect (that revenue moves in the opposite direction as average costs) could also be shown by considering an increase in costs.