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1 Introduction

In practice it is often the case that more than one model is available for forecasting. This

arises easily in economics and finance where different theories regarding the behavior of eco-

nomic agents can imply that different variables and models should have predictive content.

With forecasts from these various models in hand, one might reasonably ask whether one

of the models forecasts more accurately than the other and if the difference is statistically

significant.

As such, testing for equal out-of-sample predictive ability is a now common method for

evaluating whether a new predictive model forecasts significantly better than an existing

baseline model. Various methods have been developed to test whether any gains from the

new model are statistically significant. As with in-sample comparisons (e.g. Vuong, 1989),

the asymptotic distributions of the test statistics depend on whether the comparisons are

between nested or non-nested models. For non-nested comparisons, Granger and Newbold

(1977) and Diebold and Mariano (1995) develop asymptotically standard normal tests for

predictive ability that allow comparisons between models that don’t have estimated param-

eters. West (1996), McCracken (2000), and Corradi, Swanson and Olivetti (2001) extend

these results for non-nested models to allow for estimated parameters; the tests continue to

be asymptotically standard normal. For nested models, Clark and McCracken (2001, 2006),

McCracken (2006), Chao, Corradi and Swanson (2001), and Corradi and Swanson (2002,

2005) derive asymptotics for a collection of tests designed to determine whether a nested

model forecasts as accurately or encompasses a larger, nesting, model. In most cases,

nested comparisons imply asymptotic distributions that are not asymptotically standard

normal. However, all of these studies rely on on asymptotics that treat the estimation and

forecasting samples as limiting to infinity (covering both recursive and rolling forecasting

schemes). Under an alternative asymptotic approximation that treats the estimation sam-

ple as fixed (as in a rolling forecasting scheme) rather than limiting to infinity, Giacomini

and White (2006) obtain asymptotic normality for a test of equal predictive ability.

While this literature is rich with results and continues to grow (see such recent contri-

butions as Armah and Swanson (2006) and Anatolyev (2007)), one issue that is uniformly

overlooked is the real-time nature of the data. Specifically, the literature ignores the possi-

bility that at any given forecast origin the most recent data is subject to revision. At first, a

short-lived revision process may seem unlikely to have much of an effect on the asymptotic
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distribution of a test statistic. As an example, consider the standard F -test for predictive

ability constructed using observations t = 1, ...T . If the final observation is subject to

revision, so long as the revision is finite the asymptotic distribution of the F -test, taken as

T →∞, will be unaffected because, under reasonable assumptions, a single observation will

almost surely have no influence on the parameter estimates and subsequent test statistic.

Now consider the case in which an out-of-sample test of predictive ability is being con-

structed. The test statistic is functionally very different from an in-sample one and in a

fashion that makes it particularly susceptible to changes in the correlation structure of the

data as the revision process unfolds. This occurs for three reasons: (i) while parameter

estimates are typically functions of only a small number of observations that remain subject

to revision, out-of-sample statistics are themselves functions of a sequence of these parame-

ter estimates (one for each forecast origin t = R, ...T , ), (ii) the predictand used to generate

the forecast and (iii) the dependent variable used to construct the forecast error may be

subject to revision and hence a sequence of revisions contribute to the test statistic. If it

is the case, as noted in Aruoba (2006), that data subject to revision possess a different

mean and covariance structure than final revised data, it is not surprising that tests of

predictive ability using real-time data may have a different asymptotic distribution than

tests constructed using data that is never revised.

Accordingly, in this paper we provide analytical, Monte Carlo and empirical evidence on

pairwise tests of equal out-of-sample predictive ability for models estimated — and forecasts

evaluated — using real-time data. We consider comparisons whereby the models are non-

nested or nested, as well as a design we refer to as reverse-overlapping. In each case we

restrict attention to linear direct multi-step (DMS) models evaluated under quadratic loss

but do not require that the models be correctly specified; model residuals and forecast errors

are allowed to be conditionally heteroskedastic and serially correlated of an order greater

than the forecast horizon. In some cases, we permit the revision process to consist of both

“news” and “noise” as defined in Mankiw, Runkle and Shapiro (1984) and applied more

recently by Aruoba (2006). In general, though, we emphasize the role of noisy revisions.

Our results indicate substantial differences in the asymptotic behavior of tests of equal

predictive ability, relative to those found in the existing literature, when data is subject to

revisions. For example, when constructing tests of equal predictive ability between non-

nested models, West (1996) notes that the effect of parameter estimation error on the test
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statistic can be ignored when the same loss function is used for estimation and evaluation.

In the presence of data revisions, this result continues to hold only in the special case

in which the revision process consists only of news. When even some noise is present,

parameter estimation error contributes to the asymptotic variance of the test statistic and

cannot be ignored when conducting inference.

As another example, when constructing tests of equal predictive ability between nested

models, Clark and McCracken (2001, 2005) and McCracken (2006) note that standard test

statistics used to evaluate predictive ability are not asymptotically normal but instead have

representations as functions of stochastic integrals. However, when the revision process

contains a noise component, we show that the standard test statistics fail not only to be

asymptotically normal, but in fact diverge with probability one under the null hypothesis.

To avoid this, we introduce a variant of the standard test statistic that is asymptotically

normal despite being a comparison between two, recursively estimated, nested models.

In the case of predictable revisions, we also consider a new situation we refer to as reverse-

overlapping. The term “overlapping” comes from Vuong (1989) and describes a situation

where the null hypothesis of equal in-sample predictive ability between two ostensibly non-

nested models can arise two ways — each leading to a distinct asymptotic distribution. In

the first, the two models are non-nested with a non-degenerate (in-sample) loss differential

and asymptotic normality is obtained for the likelihood ratio. In the second, the two models

collapse onto a single model that is nested within each model and the likelihood ratio is

asymptotically mixed chi-square. In our case, the reverse is true: an ostensibly nested

pair of models can satisfy the null two ways (described below), each leading to a distinct

asymptotic distribution. While each is asymptotically normal, the appropriate asymptotic

variance can be very different. An example will be provided in Section 3.3.

Not surprisingly, as with all theoretical results, our conclusions rely upon assumptions

made on the observables. What makes our problem specifically troublesome is that the

observables are learned sequentially in time across a finite-lived revision process. For any

given historical date, we therefore have multiple “observables” for a given dependent or

predictor variable. To keep our analytics as transparent as possible, while still remaining

relevant for application, we assume that for each variable the revision process continues

sequentially for a finite 0 ≤ r << R periods. While these revisions are assumed to be

covariance stationary, only limited assumptions are made directly on the observables across
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revisions for a fixed historical date. Importantly, we also abstract from other forms of

revisions including benchmark revisions. We leave these important issues to subsequent

research.

While our results are related to the existing literature on tests of out-of-sample pre-

dictability, our results also relate back to a literature on forecasting in the presence of data

revisions including Howrey (1978), Swanson (1996) and Robertson and Tallman (1998).

Notably, our results bear some resemblance to those in Koenig, Dolmas and Piger (2003).

They, too, note that the observables likely have different statistical properties depending

upon where the observables are in the revision process. They suggest that one can improve

forecast accuracy by using the various vintages of data as they would have been observed

in real-time to construct forecasts rather than only using those observables that exist in

the most recent vintage. Their results differ from ours in that they are interested in fore-

cast accuracy while we are interested in out-of-sample inference but the main issue remains

the same: ignoring the data revision process can lead to undesired outcomes — either less

accurate forecasts or, in our case, asymptotically invalid inference.

The remainder of the paper proceeds as follows. Section 2 introduces the notation,

the forecasting and testing setup, and the assumptions underlying our theoretical results.

Section 3 defines the forecast tests considered, provides the null asymptotic results, and lays

out how, in practice, asymptotically valid tests can be calculated. Proofs of the asymptotic

results are provided in the appendix. Section 4 presents Monte Carlo results on the finite–

sample performance of the asymptotics. Section 5 applies our tests to determine whether

measures of output have predictive content for U.S. inflation. Section 6 concludes.

2 Setup

As noted above, in our theory we allow the observables to be subject to revision over a finite

number of periods, r. We have in mind the case where r is small relative to the number of

observations being used to estimate the model parameters at any given forecast origin. To

keep track of the various vintages of a given observation we use the notation ys(t) to denote

the value of the time t vintage of the observation s realization of y. Throughout, when

either there is no revision process (so that r = 0) or when the revision process is completed

(so that t ≥ s+r), we will drop the notation indexing the vintage and simply let ys(t) = ys.

The sample of observations {{ys(t), x′s(t)}t
s=1}T

t=R includes a scalar random variable ys(t)
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to be predicted, as well as a (k×1) vector of predictors xs(t). When the two models i = 1, 2

are nested or reverse-overlapping we let xs(t) = x2,s(t) = (x′1,s(t), x′22,s(t))′ with xi,s(t) the

(ki × 1) vector of predictors associated with model i. Hence the putatively nested and

nesting models are linear regressions with predictors x1,s(t) and x2,s(t) respectively. When

the models are non-nested we define x1,s(t) and x2,s(t) as two distinct (ki × 1) subvectors

of xs(t) (perhaps having some variables in common).

For each forecast origin t the variable to be predicted is yt+τ (t′), where τ denotes the

forecast horizon and t′ ≥ t+τ denotes the vintage used to evaluate the forecasts. Through-

out the evaluation period, we keep the vintage horizon r′ = t′ − t − τ fixed. At the initial

forecast origin t = R, the present data vintage consists of observations (on ys(R) and xs(R))

spanning s = 1, ...R. Letting P − τ + 1 denote the number of τ–step ahead predictions,

the progression of forecast origins span R through T = R + P − τ + 1, each consisting of

observations (on ys(t) and xs(t)) spanning s = 1, ...t. The total number of observations in

the sample corresponding to the final vintage is T = T + τ + r′. Note that the final τ + r′

vintages are used exclusively for evaluation.

Forecasts of yt+τ (t′), t = R, . . . , T , are generated using the two linear models ys+τ (t) =

x′1,s(t)β
∗
1+u1,s+τ (t) (model 1) and ys+τ (t) = x′2,s(t)β

∗
2+u2,s+τ (t) (model 2) for s = 1, ..., t−τ .

Under the null hypothesis of equal forecast accuracy between nested models, model 2 nests

model 1 for all t such that model 2 includes dim(x22,s(t)) = k22 excess parameters. Then

β∗2 = (β∗′1 , 0′)′, and yt+τ (t′) − x′1,t(t)β
∗
1 = u1,t+τ (t′) = u2,t+τ (t′) ≡ ut+τ (t′) for all t and t′.

Because of this degeneracy, the hypothesis of equal population predictive ability is trivially

true since Eu2
1,t+τ (t′) = Eu2

2,t+τ (t′) ≡ Eu2
t+τ (t′) for all t and t′.

Under the null hypothesis of equal forecast accuracy between non-nested or reverse-

overlapping models, there are no explicit restrictions on the model parameters. We only

require that, when evaluated at the population value of the pseudo-true parameters associ-

ated with the models, the squared forecast errors have a common mean and hence (with a

covariance stationarity assumption made later) E(u2
1,t+τ (t′)− u2

2,t+τ (t′)) = 0 for all t.

Both model 1’s and model 2’s forecasts are generated recursively using OLS-estimated

parameters. Under this approach both β∗1 and β∗2 are re-estimated as we progress across the

vintages of data associated with each forecast origin: for t = R, . . . , T , model i’s (i = 1, 2)

prediction of yt+τ (t′) is created using the parameter estimate β̂i,t based on vintage t data.

Models 1 and 2 yield two sequences of P − τ + 1 forecast errors, denoted û1,t+τ (t′) =
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yt+τ (t′)− x′1,t(t)β̂1,t and û2,t+τ (t′) = yt+τ (t′)− x′2,t(t)β̂2,t, respectively.

Finally, the asymptotic results below use the following additional notation. Let hi,t+τ (t′) =

(yt+τ (t′) − x′i,t(t)β
∗
i )xi,t(t), hi,s+τ = (ys+τ − x′i,sβ

∗
i )xi,s, Hi(t) = t−1 ∑t−τ

s=1 hi,s+τ , Bi =

(Exi,sx′i,s)−1 and dt+τ (t′) = u2
1,t+τ (t′)− u2

2,t+τ (t′). Throughout, when the models are non-

nested or reverse-overlapping we let ht+τ = (h′1,t+τ , h
′
2,t+τ )′, ht+τ (t′) = (h′1,t+τ (t′), h′2,t+τ (t′))′

and Ut+τ = [dt+τ (t′), h′t+τ (t′)−Eh′t+τ (t′), h′t+τ , x
′
t−Ex′t]′. When the models are nested, let

hs+τ = h2,s+τ , ht+τ (t′) = h2,t+τ (t′) and Ut+τ = [h′t+τ (t′) − Eh′t+τ (t′), h′t+τ , x
′
t − Ex′t]′.1 In

either case let H(t) = t−1 ∑t−τ
s=1 hs+τ . Define the selection matrix J = (Ik1×k1 , 0k1×k22) and

let Ω denote the asymptotic variance of the scaled loss differential dt+τ (t′) defined more

precisely in Section 3.

Given the definitions and forecasting scheme described above, the following assumptions

are used to derive the limiting distributions in Theorems 1-4. The assumptions are intended

to be only sufficient, not necessary and sufficient.

(A1) The parameter estimates β̂i,t, i = 1, 2, t = R, ..., T , are estimated using OLS for each

vintage in succession and hence satisfy β̂i,t = arg minβ
∑t−τ

s=1(ys+τ (t)− x′i,s(t)βi)2.2

(A2) (a) Ut+τ is covariance stationary, (b) EUt+τ = 0, (c) Extx′t < ∞ and is positive

definite, (d) For some n > 1 and for each integer 0 ≤ j, (yt(t + j), x′t(t + j))′ is uniformly

L2n bounded, (e) Ut+τ is strong mixing with coefficients of size −2n/(n−1), (f) Ω is positive

definite.

(A3) (a) Let K(x) be a kernel such that for all real scalars x, |K(x)| ≤ 1, K(x) = K(−x)

and K(0) = 1, K(x) is continuous, and
∫∞
−∞ |K(x)|dx, (b) For some bandwidth M and

constant i ∈ (0, 0.5), M = O(P i).

(A4) limR,P→∞ P/R = π ∈ (0,∞).

(A4′) limR,P→∞ P/R = 0.

The assumptions provided here are closely related to those in West (1996) and Clark

and McCracken (2005). We restrict attention to forecasts generated using parameters

estimated by OLS (Assumption 1) and we do not allow for processes with either unit roots
1When the models are nested, dt+τ (t′) = 0 for all t and t′.
2That is, at each forecast origin t, we use the last vintage of data available at period t to estimate the

model by OLS. As forecasting moves forward in time, we use ever-newer vintages of data, and a time sample
of increasing length.
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or time trends (Assumption 2). When long-run variances are estimated, standard kernel

estimators are used (Assumption 3). We provide asymptotic results for situations in which

the in-sample size of the initial forecast origin R and the number of predictions P are of

the same order (Assumption 4) as well as when R is large relative to P (Assumption 4′).

Although our assumptions are restrictive in some ways — notably the comparison of

linear models — in other ways they are fairly general. We allow for conditional heteroskedas-

ticity and serial correlation in the levels and squares of the forecast errors. Nevertheless, our

assumptions remain strong enough for us to use Wooldridge and White’s (1998) theoretical

results on CLTs.

3 Tests and Asymptotic Distributions

In this section we provide asymptotics for tests of equal forecast accuracy for non-nested,

nested and reverse-overlapping comparisons. For the comparison of non-nested models we

allow data revisions to consist of both news and noise. For reverse-overlapping model

comparisons, noisy revisions are the only relevant form of revision. In the nested case, for

tractability we allow the data revisions to consist only of noise.3

In each case, we begin by presenting asymptotically valid expansions of the sample aver-

age of the loss differentials associated with models 1 and 2, (P − τ + 1)−1 ∑T
t=R(û2

1,t+τ (t
′)−

û2
1,t+τ (t

′)). We present these expansions in order to make clear exactly how and when

data revisions affect the asymptotic distribution of the tests of equal forecast accuracy al-

ready existing in the literature. Building upon these expansions, we then provide theorems

that characterize the asymptotic distributions of certain test statistics emphasizing how

asymptotically valid inference can be conducted in the presence of data revisions.

3.1 Non-nested comparisons

In the context of non-nested models, Diebold and Mariano (1995) propose a test for equal

MSE based upon the sequence of loss differentials d̂t+τ (t′) = û2
1,t+τ (t′) − û2

2,t+τ (t′). If we

define MSEi = (P − τ + 1)−1 ∑T
t=R û2

i,t+τ (t′) (i = 1, 2), d̄ = (P − τ + 1)−1 ∑T
t=R d̂t+τ (t′) =

MSE1−MSE2, Γ̂dd(j) = (P −τ +1)−1 ∑T
t=R+j(d̂t+τ (t′)− d̄)(d̂t+τ−j(t′− j)− d̄), Γ̂dd(−j) =

3Working with revisions consisting of news is feasible but an order of magnitude more complex than for
the non-nested case. We will return to this issue in a subsequent draft of the paper.
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Γ̂dd(j), and Ŝdd =
∑P−1

j=−P+1 K(j/M)Γ̂dd(j), the statistic takes the form

MSE-t = (P − τ + 1)1/2 × d̄
√

Ŝdd

. (1)

Under the null that the population difference in MSEs from models 1 and 2 equal zero, the

authors argue that the test statistic is asymptotically standard normal and hence inference

can be conducted using the relevant tables.

West (1996) however, notes that this outcome depends upon whether or not the fore-

cast errors depend upon estimated parameters. If they do, then the statistic remains

asymptotically normal but may have an asymptotic variance that reflects not only the

long-run variance of the loss differential limR,P→∞ var(P 1/2d̄) = Sdd but also additional

variance and covariance terms that arise due to parameter estimation error. Specifically,

if linear, OLS-estimated models are used for forecasting, then P 1/2d̄ →d N(0,Ω), where

Ω = Sdd+2(1−π−1 ln(1+π))(FBSdh+FBShhBF ′) with F = (−2Eu1,t+τx′1,t, 2Eu2,t+τx′2,t),

B a block diagonal matrix with block diagonal elements B1 and B2, Shh the long-run vari-

ance of ht+τ and Sdh the long-run covariance of ht+τ and dt+τ . As a result, the MSE-t test

as constructed in (1) may be missized because, generally speaking, the estimated variance

Ŝdd is consistent for Sdd but not Ω.

One case in which the MSE-t test (1) will be asymptotically valid in the presence of

estimated parameters is when F = 0. This case arises naturally in the present context

because F is equal to zero when the forecast error is uncorrelated with the predictors —

a case that will hold when quadratic loss is used for both estimation and inference on

predictive ability and the observables are covariance stationary.

In the presence of data revisions, it’s this last part that draws attention — that the

observables used to construct and evaluate the forecast errors are covariance stationary.

For example, in the absence of data revisions, ys(t) = ys(t′) and xs(t) = xs(t′) for all t, t′.

Hence at the population level, the residuals ys+τ −x′i,sβ
∗
i , s = 1, ..., t−τ , and forecast errors

yt+τ − x′i,tβ
∗
i , t = R, ..., T , have the same covariance structure. This implies that when the

in-sample moment condition E(ys+τ−x′i,sβ
∗
i )xi,s = 0 is satisfied it must also be the case that

the out-of-sample moment condition E(yt+τ − x′i,tβ
∗
i )xi,t = 0 is satisfied. But when there

are data revisions, ys+τ − x′i,sβ
∗
i and yt+τ (t′)− x′i,t(t)β

∗
i need not have the same covariance

structure. Consequently, E(ys+τ − x′i,sβ
∗
i )xi,s equaling zero need not imply anything about

whether or not the moment E(yt+τ (t′)− x′i,t(t)β
∗
i )xi,t(t) equals zero.
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If we keep track of this distinction and use algebra along the lines of West (1996), we

obtain the following expansion.

Lemma 1: Let Assumptions 1, 2 and 4 or 4′ hold. P 1/2d̄ = P−1/2 ∑T
t=R(u2

1,t+τ (t′) −

u2
2,t+τ (t′) + FBH(t)) + op(1).

The expansion in Lemma 1 is notationally identical to that in West’s (1996) Lemma 4.1.

Conceptually, though, it differs in two important ways. First, the analytics are derived

allowing for data revisions at the end of each sequential vintage of data. Second, the term

F is defined as 2(−Eu1,t+τ (t′)x′1,t(t), Eu2,t+τ (t′)x′2,t(t)), thus emphasizing the distinction

between the population in-sample residuals and the population out-of-sample forecast errors.

Since the asymptotic expansion is notationally identical to that in West (1996) it’s not

surprising that the asymptotic distribution of the scaled average of the loss differentials

remains (notationally) the same.

Theorem 1: Let Assumptions 1, 2 and 4 or 4′ hold. P 1/2d̄ →d N(0,Ω) where Ω =

Sdd + 2(1− π−1 ln(1 + π))(FBSdh + FBShhBF ′).

Since the asymptotic distribution is essentially the same as in West (1996), the special

cases in which one can ignore parameter estimation error remain essentially the same. For

example, if the number of forecasts P − τ + 1 is small relative to the number of in-sample

observations from the initial forecast origin R, such that limR,P→∞P/R = π = 0, then

2(1 − π−1 ln(1 + π)) = 0, and hence the latter covariance terms are zero. This case is

identical to that in West (1996).

Another special case arises when the out-of sample moment condition F =

2(−Eu1,t+τ (t′)x′1,t(t), Eu2,t+τ (t′)x′2,t(t)) equals zero. In this case the latter covariance terms

are zero and hence parameter estimation error can be ignored. To see when this will or will

not arise it is useful to write out the population forecast errors explicitly. That is, consider

the moment condition E(yt+τ (t′)−x′i,t(t)β
∗
i )x′i,t(t). Moreover, note that β∗i is defined as the

probability limit of the regression parameter estimate in the regression ys+τ = x′i,sβ
∗
i +ui,s+τ .

Hence F equals zero if Exi,t(t)yt+τ (t′) = (Exi,t(t)x′i,t(t))(Exi,tx′i,t)−1(Exi,tyt+τ ) for each

i = 1, 2. Some specific instances that result in F = 0 are listed below.

1. x and y are unrevised

2. x is unrevised and the revisions to y are uncorrelated with x

3. x is unrevised and final revised vintage y is used for evaluation

4. x is unrevised and the “vintages” of y’s are redefined so that the data release used for
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estimation is also used for evaluation (as suggested by Koenig, Dolmas and Piger (2001))

In general though, neither of these special cases — that π = 0 or F = 0 — need hold.

In the former case, West and McCracken (1998) emphasize that in finite samples the ratio

P/R = π̂ may be small but that need not guarantee that parameter estimation error is

negligible since it may be the case that FBSdh + FBShhBF ′ remains large. For the

latter, in the presence of predictable data revisions it is typically not the case that F = 0.

To conduct inference then requires constructing a consistent estimate of the asymptotic

variance Ω given in Theorem 1. We return to consistent estimation of Ω in Section 3.4.

3.2 Nested comparisons

In the context of nested models, Clark and McCracken (2005) and McCracken (2006) also

propose tests for equal MSE based upon the sequence of loss differentials. Specifically, they

consider the MSE-t statistic discussed in (1) but applied to nested models and another that

can be constructed analogously to an in-sample F -test but using out-of-sample forecast

errors, given by

MSE-F = (P − τ + 1)× MSE1 −MSE2

MSE2
= (P − τ + 1)× d̄

MSE2
. (2)

In both cases, the tests have limiting distributions that are non–standard when the fore-

casts are nested under the null. Specifically, McCracken (2006) show thats, for one–step

ahead forecasts from well-specified nested models, the MSE-t and MSE-F statistics converge

in distribution to functions of stochastic integrals of quadratics of Brownian motion, with

limiting distributions that depend on the parameter π and the number of exclusion restric-

tions k22, but not any unknown nuisance parameters. For this case, simulated asymptotic

critical values are provided. In Clark and McCracken (2005), the asymptotics are extended

to permit direct multi-step forecasts and conditional heteroskedasticity. In this environ-

ment the limiting distributions are affected by unknown nuisance parameters. Accordingly,

for this situation, a bootstrap procedure is recommended. However, all of these results are

derived ignoring the potential for data revisions.

In the presence of predictable data revisions, the asymptotics for tests of predictive

ability change dramatically — much more so than in the non-nested case. As was the case

for non-nested models, the crux of the problem is that when there are data revisions, the

residuals ys+τ − x′i,sβ
∗
i s = 1, ..., t− τ and the forecast errors yt+τ (t′)− x′i,t(t)β

∗
i t = R, ..., T

need not have the same covariance structure and hence, in particular, E(ys+τ − x′2,sβ
∗
2)x2,s
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equaling zero need not imply anything about whether or not the moment F = 2E(yt+τ (t′)−

x′2,t(t)β
∗
2)x2,t(t) equals zero. If we keep track of this distinction and use algebra along the

lines of West (1996), we obtain the following expansion.

Lemma 2: Let Assumptions 1 and 2 hold and let F *= 0. (i) If Assumption 4 holds,

P 1/2d̄ = F (−JB1J ′ + B2)(P−1/2 ∑T
t=R H(t)) + op(1). (ii) If Assumption 4′ holds, R1/2d̄ =

F (−JB1J ′ + B2)(R1/2H(R)) + op(1).

The expansion in Lemma 2 (i) bears some resemblance to that in Lemma 1 for non-

nested models but omits the lead term (P−1/2 ∑T
t=R u2

1,t+τ (t′) − u2
2,t+τ (t′)) because the

models are nested under the null. Interestingly, neither (i) nor (ii) bears any resemblance

to the corresponding expansions in Clark and McCracken (2005) and McCracken (2006) for

nested models. The key difference is that the Lemma 2 expansion is of order P 1/2, rather

than the order P in Clark and McCracken (2005) and McCracken (2006) and as one would

typically expect from a comparison of nested models using a statistic like an F -stat. Not

surprisingly, this change in order implies very different asymptotic behavior of out-of-sample

averages of loss differentials from nested models.

Theorem 2: Let Assumptions 1 and 2 hold and let F *= 0. (i) If Assumption 4 holds,

P 1/2d̄→d N(0,Ω), where Ω = 2(1−π−1 ln(1+π))F (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′. (ii)

If Assumption 4′ holds, R1/2d̄→d N(0,Ω), where Ω = F (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′.

Theorem 2 makes clear that in the presence of predictable revisions, a t-test for equal

predictive ability can be constructed that is asymptotically normal under the null hypothe-

sis. This is in sharp contrast to the results in Clark and McCracken (2005) and McCracken

(2006), in which the tests generally have non-standard limiting distributions. This finding

has a number of important implications, listed below.

1. The MSE-F statistic diverges with probability 1 under the null hypothesis. To see

this note that Theorem 2 implies that the numerator of MSE-F is P 1/2(P 1/2d̄). So long as

the probability limit of MSE2 is finite we know that the MSE-F is Op(P 1/2) and hence the

asymptotic size of the test (one-sided to the right) is 50%.

2. The MSE-t test (1) also diverges with probability 1 under the null hypothesis. To see

this note that by Theorem 2, the numerator of MSE-t is Op(1). Following arguments made

in Clark and McCracken (2005) and McCracken (2006), the denominator of the MSE-t is

Op(P−1). Taking account of the square root in the denominator of the MSE-t test implies
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that the MSE-t test is Op(P 1/2) and hence also has an asymptotic size of 50%.

3. The standard forms of the MSE-F and MSE-t tests have power against the null of

Granger non-causality and the news vs. noise hypothesis that the in-sample F -test does

not have.

4. Out-of-sample inference for nested comparisons can be conducted without the strong

auxiliary assumptions made in Clark and McCracken (2005) and McCracken (2006) regard-

ing the correct specification of the models.4

5. Perhaps most importantly, asymptotically valid inference can be conducted without

the bootstrap or non-standard tables. So long as an asymptotically valid estimate of Ω is

available, standard normal tables can be used to conduct inference. Consistent methods

for estimating the appropriate standard errors are described in Section 3.4.

However, even with predictable revisions (that make F non-zero), it is possible that

the asymptotic distributions of the MSE-t and MSE-F tests can differ from the results

given in Theorem 2. In some cases, even with F *= 0, the variance Ω may be zero, due

to a singularity in the middle term of the quadratic form that determines Ω (specifically,

(−JB1J ′ + B2)). Cancellation among terms in (−JB1J ′ + B2)Shh(−JB1J ′ + B2) may

make Ω singular. This cancellation seems more likely to occur with one-step forecasts and

conditionally homoskedastic residuals (which reduce Shh to σ2B−1
2 ), although it may occur

even without these restrictions. As a simple example, suppose a DGP that relates y to a

variable x with mean µ *= 0, with both y and x having variances of 1. Let y be subject to one

revision (provided one period after the publication of the initial estimate), with revisions

having a mean of κ *= 0. Suppose the null forecasting model includes just a constant; the

alternative includes a constant and x. In this case, the F vector is −2κ(1, µ) *= 0. However,

working through the algebra shows that Ω = 0. In such situations, the numerator and

denominator of a t-test for equal MSE will both be converging to zero. If the convergence

rates are the same, the test may have a non–degenerate distribution, but that distribution

will differ from those described above. Nonetheless, it is possible that, in finite samples, the

distributions described above may reasonably approximate the actual distribution. Using

this simple DGP, we examine this possibility in the Monte Carlo analysis.
4In previous work we have required that serial correlation in the residuals and forecast errors were of

finite order. In most instances we treated τ -step ahead errors as forming an MA(τ − 1) process.
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3.3 Reverse overlapping comparisons

In the preceding discussion, the null hypothesis of equal forecast accuracy between two

nested models was imposed by maintaining that the additional predictors, x22,t, associated

with the unrestricted model held no predictive content for yt+τ and hence the associated

regression parameters β22 were zero. While not immediately obvious, the null hypothesis

of equal forecast accuracy can hold even when β22 is not zero — but only when it is also

the case that the data used for evaluating the forecast is subject to revision and has the

right covariance structure.

To see this consider the following simple example. Suppose that the dependent variable

(which is subject to revision) is determined by the covariance stationary, simple, linear

regression yt+1 = β0 + β22xt + εt+1, with scalar stochastic regressor xt (that is not revised)

and white noise error εt. Let model 1 be the trivial constant mean model consisting of just

an intercept and let model 2 be the correctly specified model consisting of both an intercept

and xt. If we estimate each by OLS, the associated squared forecast errors, evaluated at

the probability limits of the parameter estimates, are u2
1,t+1(t′) = (yt+1(t′) − Eyt+1)2 and

u2
2,t+1(t′) = (yt+1(t′)− Eyt+1 − (xt − Ext)β22)2, where β22 = cov(xt, yt+1)/var(xt).

For equal forecast accuracy the expected difference of these squared forecast errors

should be zero. Taking this expectation we obtain E[u2
1,t+1(t′)− u2

2,t+1(t′)] = −2E[(yt+1−

yt+1(t′))(xt − Ext)]β22 + E(xt − Ext)2β2
22. In the previous section, we obtained equal

forecast accuracy because β22 was restricted to zero under the null. Closer inspection,

however, reveals that the difference can be zero even when β22 is not, so long as the revision

yt+1 − yt+1(t′) is not zero as well. Substituting in the definition of β22 and rearranging

terms we find that E[u2
1,t+1(t′) − u2

2,t+1(t′)] can also be zero if 2cov(yt+1 − yt+1(t′), xt) =

cov(xt, yt+1). For this case to apply, the revisions yt+1 − yt+1(t′) must have just the right

covariance with the predictors xt. Equivalently, the two models will have equal predictive

ability so long as β22 = 2cov(yt+1− yt+1(t′))/var(xt) — that is, if the regression coefficient

happens to be twice the value of the slope coefficient associated with the projection of the

revision yt+1 − yt+1(t′) on the predictand xt.

When this situation arises we refer to two models as being reverse-overlapping. The

term “overlapping” comes from Vuong (1989) and describes a situation in which the null

hypothesis of equal in-sample predictive ability between two ostensibly non-nested models

can arise two ways, each leading to a distinct asymptotic distribution. In our case, the
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“reverse” is true: an ostensibly nested pair of models can satisfy the null two ways, each

leading to a distinct asymptotic distribution. The first is precisely that from our out-of-

sample theory in the previous nested section. The latter, as we will see below, is related

to our out-of-sample theory from the previous non-nested section.

Prior to presenting the result it is helpful to revisit some notation. Recall from Section 2

that, when we work with reverse-overlapping models, we define ht+τ = (h′1,t+τ , h
′
2,t+τ )′ as we

did in the non-nested case, rather than ht+τ = h2,t+τ as we did in the nested case. Similarly,

we define F as 2(−Eu1,t+τ (t′)x′1,t(t), Eu2,t+τ (t′)x′2,t(t)) rather than 2Eu2,t+τ (t′)x2,t(t) as we

did for the nested case. With these changes in hand, if we again let B denote the block

diagonal matrix formed by B1 and B2, we obtain the following expansion.

Lemma 3: Let Assumptions 1, 2 and 4 or 4′ hold. P 1/2d̄ = P−1/2 ∑T
t=R(u2

1,t+τ (t′) −

u2
2,t+τ (t′) + FBH(t)) + op(1).

The expansion in Lemma 3 matches that of Lemma 1 for the case of non-nested models

rather than that of Lemma 2 for the nested case. The reason is that the interaction of the

additional predictive content in x22,t with this special form of data revision (i) induces the

initial term, P−1/2 ∑T
t=R(u2

1,t+τ (t′)− u2
2,t+τ (t′)), to be non-zero and (ii) prevents h1,t+τ (t′)

and h1,t+τ from being numerically equivalent to Jh1,t+τ (t′) and Jh2,t+τ respectively so that

F and ht+τ need to be redefined. Again, since the asymptotic expansion is identical to that

in West (1996), it’s not surprising that the asymptotic distribution of the scaled average of

the loss differentials remains (notationally) the same.

Theorem 3: Let Assumptions 1, 2 and 4 or 4′ hold. P 1/2d̄ →d N(0,Ω) where Ω =

Sdd + 2(1− π−1 ln(1 + π))(FBSdh + FBShhBF ′).

Because of the similarity between Theorem 1 and Theorem 3, some of the methods

that apply to constructing an asymptotically valid test statistic for the non-nested case

remain applicable for the reverse-overlapping case. When π = 0, 2(1−π−1 ln(1+π)) equals

zero, and hence the effects of parameter estimation error are asymptotically negligible. In

contrast, though, by the very nature of the reverse-overlapping models, it is very unlikely

that it will be the case that F = 0. To see this, note that, using our earlier example

as a foil, since β22 is not zero neither is cov(xt, yt+τ ). Since reverse overlapping implies a

non-degenerate relationship between cov(xt, yt+τ ) and cov(xt, yt+τ − yt+τ (t′)), it must also

be the case that cov(xt, yt+τ − yt+τ (t′)) is non-zero. But for our simple example, this in

turn implies that F cannot be zero.
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For reverse-overlapping comparisons it is then again the case that conducting asymptot-

ically valid inference will require consistent estimation of the appropriate standard errors

from Theorem 3. We show how to do so in the following section.

3.4 Estimating the standard errors

For each of the model comparisons we obtain results suggesting that P 1/2d̄/Ω̂1/2 (or R1/2d̄/Ω̂1/2)

will be asymptotically standard normal and hence the corresponding tables can be used to

conduct inference so long as consistent estimates of the relevant standard errors can be

constructed. In this section we provide details on methods for constructing asymptotically

valid estimates of the standard errors associated with each of the non-nested, nested and

reverse-overlapping cases.

In each case, some combination of Sdd, Sdh, Shh, F , B, and 2(1−π−1 ln(1+π)) needs to be

estimated. Since π̂ = P/R is consistent for π, estimating Π ≡ 2(1−π−1 ln(1+π)) is trivial.

For F and B we use the obvious sample analogs. For B̂i = (T−1 ∑T−max(τ,r)
s=1 xi,sx′i,s)−1,

we let B̂ denote the block diagonal matrix constructed using B̂1 and B̂2. For non-nested

and reverse-overlapping comparisons, we define F̂i = 2(−1)i[P−1 ∑T
t=R(ûi,t+τ (t′)x′i,t(t)] and

F̂ = (F̂1, F̂2). For nested comparisons, F̂ = 2[P−1 ∑T
t=R û2,t+τ (t′)x′2,t(t)].

For the long-run variances and covariances we consider estimates based upon stan-

dard kernel-based estimators akin to those used in West (1996), West and McCracken

(1998) and McCracken (2000). To be more precise, we use kernel-weighted estimates of

Γdd(j) = E(u2
1,t+τ (t′)−u2

2,t+τ (t′))(u2
1,t+τ−j(t′−j)−u2

2,t+τ−j(t′−j)), Γdh(j) = E(u2
1,t+τ (t′)−

u2
2,t+τ (t′))h′t+τ−j and Γhh(j) = Eht+τh′t+τ−j to estimate Sdd, Sdh and Shh. To construct the

relevant pieces recall that ûi,t+τ (t′) = yt+τ (t′)− x′i,t(t)β̂i,t, t = R, ..., T . For non-nested and

reverse-overlapping comparisons, define ĥs+τ = ((ys+τ−x′1,sβ̂1,T )x′1,s, (ys+τ−x′2,sβ̂2,T )x′2,s)′,

s = 1, ..., T . For nested comparisons, define ĥs+τ = (ys+τ − x′2,sβ̂2,T )x2,s, s = 1, ..., T .

With these sequences of forecast errors and OLS orthogonality conditions in hand, let

Γ̂dd(j) = P−1 ∑T
t=R+j(û2

1,t+τ (t′) − û2
2,t+τ (t′))(û2

1,t+τ−j(t′ − j) − û2
2,t+τ−j(t′ − j)), Γ̂hh(j) =

T−1 ∑T
s=1+j ĥs+τ ĥ′s+τ−j and Γ̂dh(j) = P−1 ∑T

t=R+j(û2
1,t+τ (t′)−û2

2,t+τ (t′))ĥ′t+τ−j , with Γ̂dd(j) =

Γ̂dd(−j), Γ̂hh(j) = Γ̂′hh(−j) and Γ̂dh(j) = Γ̂′dh(−j). Let K(.) define an appropriate ker-

nel function and M a bandwidth. We then estimate the long-run variances and covari-

ances as Ŝdd =
∑P−1

j=−P+1 K(j/M)Γ̂dd(j), Ŝhh =
∑T−1

j=−T+1 K(j/M)Γ̂hh(j), and Ŝdh =
∑P−1

j=−P+1 K(j/M)Γ̂dh(j). The following theorem shows that the relevant pieces are con-

sistent for their population counterparts.
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Theorem 4: Let Assumptions 1, 2 and 4 or 4′ hold. (a) B̂i →p Bi, F̂ →p F , Γ̂dd(j) →p

Γdd(j), Γ̂dh(j) →p Γdh(j) and Γ̂hh(j) →p Γhh(j). (b) If Assumption 3 holds, Ŝdd →p Sdd,

Ŝdh →p Sdh, Ŝhh →p Shh.

Along with Theorems 1-3, Theorem 4 and Slutsky’s Theorem imply that P 1/2d̄/Ω̂1/2 (or

R1/2d̄/Ω̂1/2) is asymptotically standard normal and hence asymptotically valid inference

can be conducted using the appropriate tables. Monte Carlo evidence on the finite sample

performance of these estimators is given in Section 4.

Of course valid inference requires using the individual components appropriately when

constructing Ω̂. For non-nested comparisons one can use either Ω̂ = Ŝdd + 2Π̂(F̂ B̂Ŝdh +

F̂ B̂ŜhhB̂F̂ ) or Ω̂ = Ŝdd, depending on whether one expects that there is a noise component

to the data revisions (with no noise, either estimate is asymptotically appropriate; with

noise, only the former is appropropriate). For reverse-overlapping comparisons the former

is the only relevant choice because predictable revisions are a necessary condition for the

comparison to exist. For nested comparisons, one can use either Ω̂ = 2Π̂F̂ (−JB̂1J ′ +

B̂2)Ŝhh(−JB̂1J ′ + B̂2)F̂ ′ or Ω̂ = F̂ (−JB̂1J ′ + B̂2)Ŝhh(−JB̂1J ′ + B̂2)F̂ ′, depending upon

whether or not one suspects that the π > 0 or π = 0 asymptotics are those most appropriate

in a given application.

Interestingly, when making an ostensibly nested comparison, if one is unsure of whether

or not the reverse-overlapping case might apply, one can use the reverse-overlapping vari-

ant of Ω̂ as an asymptotically valid estimate of both Sdd + 2Π(FBSdh + FBShhBF ′)

and 2ΠF (−JB1J ′ + B2)Shh(−JB1J ′ + B2)F ′. To see this, note that when the models

are nested, Sdd and Sdh are both zero and furthermore, straightforward algebra reveals

that the reverse-overlapping definition of FBShhBF ′ collapses to the nested definition of

F (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′. However, in the Monte Carlo experiments described

in the next section, it was consistently the case that using the standard error estimate based

on the overlapping approach yielded a rejection rate of roughly zero. As a result, we don’t

include this approach in the nested model simulation results below.

4 Monte Carlo Evidence

We use simulations of simple DGPs to evaluate the finite sample properties of the above

tests for equal forecast MSE in the presence of data revisions that exhibit either news or

noise. As a baseline we also consider results in the absence of revisions. In simulations of
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non–nested models, we focus on t-tests for equal MSE, one computed without regard to

the impact of data revisions (using just Sdd) and another adjusting for the impact of data

revisions (using Sdd + 2Π(FBSdh + FBShhBF ′)). In simulations of the nested model case,

we evaluate size and power of tests of equal forecast accuracy using critical values based on

previous work (McCracken, 2006) that ignores the revision process as well as those that use

standard normal critical values that are applicable in the presence of predictable revisions.

For the nested experiments we focus on π > 0 asymptotics and consider four tests: MSE-F

compared against critical values from McCracken (2006), MSE-t using Ω = Sdd and critical

values from McCracken (2006), MSE-t using Ω = 2ΠF (−JB1J ′ + B2)Shh(−JB1J ′ + B2)F ′

and standard normal critical values, and MSE-t using Ω = Sdd + 2Π(FBSdh + FBShhBF ′)

and standard normal critical values. We also report results for three test statistics based

on π = 0 asymptotics: MSE-F against π = 0 critical values from McCracken (2006),

MSE-t using Sdd and standard normal critical values, and MSE-t using Ω = F (−JB1J ′ +

B2)Shh(−JB1J ′ + B2)F ′ and standard normal critical values.

We proceed by first describing our Monte Carlo framework and the construction of the

test statistics. We then present results on the size and power of the forecast–based tests, first

for the non–nested case and then the nested case. In this draft, we consider just one–step

ahead forecasts (so τ = 1). We will add results for multi-step forecasts, as well as the reverse

overlapping case, in a future draft. In all cases, the primary DGPs are parameterized to

roughly reflect the properties (estimated with 1961-2003 data from the 2007:Q1 vintage) of

the change in the quarterly U.S. inflation rate (as measured by the GDP price index) and an

output gap computed with the HP filter. The variable being forecast roughly corresponds

to the change in inflation; the variables used to forecast inflation have properties similar to

those of the HP output gap.

4.1 Monte Carlo design: non-nested case

In the non–nested forecast case, we consider a DGP that relates y to lags of y, x1, and

x2, with x1 independent of x2 and both variables following AR processes. This basic VAR

structure generates the final or true values of y, x1, and x2. One model used to forecast

y includes lags of y and just x1; the other includes lags of y and just x2. To establish a

baseline, we first consider the properties of forecast tests based entirely on the final data,

with final data used to generate and evaluate forecasts (using the data yt, x1,t, and x2,t

generated as detailed below). Data are generated using independent draws of innovations
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from the standard normal distribution and the autoregressive structure of the DGP. The

complete data generating process for the final data takes the following form.

yt = −.4yt−1 − .3yt−2 + .25x1,t−1 + (.25 + β)x2,t−1 + uy,t (3)

x1,t = 1.1x1,t−1 − .3x1,t−2 + ux1,t

x2,t = 1.1x2,t−1 − .3x2,t−2 + ux2,t

V ar




uy,t

ux1,t

ux2,t



 =





1.0
0 .5
0 0 .5





The coefficient β is set to zero in size experiments and 0.5 in power experiments.

We focus, of course, on data subject to revision, supposing the final values are released

with a delay. In practice, data such as GDP are subject to many revisions. In the case

of GDP-related data, three estimates are published 1, 2, and 3 months after the end of

a quarter; subsequent estimates are published in three annual revisions; and yet further

revisions are published in periodic benchmark revisions. In our Monte Carlo exercises, we

try to simplify matters while at the same time preserving some of the essential features of

actual revisions. In size experiments, we allow for two revisions of an initially published

estimate. Specifically, a first estimate of each variable’s value in period t is published in

period t (denoted yt(t), x1,t(t), and x2,t(t)). Updated estimates (yt(t + 1), x1,t(t + 1),

and x2,t(t + 1)) are published in period t + 1. The final estimates (yt, x1,t, and x2,t) are

treated as being published in period t + 8. The particular dating is of course arbitrary, but

our intention is to capture the empirical regularity of a combination of early revisions and

late revisions. The first revision (published in t + 1 in our simplified dating) is meant to

correspond to the first revision of NIPA estimates; the second is meant to correspond to

revisions of NIPA data published two years after the initial estimate (published in t + 8 in

our simplified dating).

In power experiments, we simplify things a bit in the interest of better controlling which

forecast is more accurate in real time, and consider a single revision, with initial estimates

published in period t and final estimates published in period t + 4. Motivated by work in

such studies as Croushore and Stark (2003), Faust and Wright (2005), and Arouba (2006)

on predictability in data revisions, the revision processes have a common general structure,

relating a revision between the prior estimate and current estimate to the prior estimate

and an independent innovation.

18



The data generating process for the revisions incorporated in the size experiments is

given by the following.

yt − yt(t + 1) = γy,1yt(t + 1) + v1,y,t (4)

x1,t − x1,t(t + 1) = γx1,1x1,t(t + 1) + v1,x1,t

x2,t − x2,t(t + 1) = γx2,1x2,t(t + 1) + v1,x2,t

yt(t + 1)− yt(t) = γy,2yt(t) + v2,y,t

x1,t(t + 1)− x1,t(t) = γx1,2x1,t(t) + v2,x1,t

x2,t(t + 1)− x2,t(t) = γx2,2x2,t(t) + v2,x2,t.

In implementation, we generate the preliminary data with a simple iterative approach:

from the final data and draws of the errors v1,y,t, v1,x1,t, and v1,x2,t, we use the first three

equations in (4) to construct the second estimates, published in period t+1; from the second

estimates and draws of the errors v2,y,t, v2,x1,t, and v2,x2,t, we use the last three equations

(4) to construct the initial estimates, published in period t. In the power experiments, we

allow for a single revision, with the final estimate published with a four-period delay:

yt − yt(t) = γy,1yt(t) + v1,y,t (5)

x1,t − x1,t(t) = γx1,1x1,t(t) + v1,x1,t

x2,t − x2,t(t) = γx2,1x2,t(t) + v1,x2,t

Our parameterizations of the revision processes are drawn from empirical estimates for

real-time U.S. data on the change in GDP inflation and the HP output gap from 1965

through 2003. As detailed in section 5, this empirical evidence is for revisions from first

estimates to second (from the first vintage in the Philadelphia Fed’s real time data set to

the second) and for revisions from the second estimate to one published two years after

the initial estimate. The innovations in the revisions equations are all iid normal random

variables. In size experiments, the standard deviations of the innovations v1,y,t, v1,x1,t,

v1,x2,t, v2,y,t, v2,x1,t, and v2,x2,t are, respectively, 0.9, 1.3, 1.3, 0.5, 0.2, and 0.2. In power

experiments, the standard deviations of v1,y,t, v1,x1,t, and v1,x2,t are, respectively, 0.5, 0.2,

and 0.2. In the baseline size experiments with predictable revisions, the γ coefficients are

γy,1 = -0.2, γx1,1 = -0.3, γx2,1 = -0.3, γy,2 = -0.05, γx1,2 = -0.2, and γx2,2 = -0.2. In the

baseline power experiments with predictable revisions, the γ coefficients are γy,1 = -0.2,

γx1,1 = -0.3, and γx2,1 = -0.3.
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In all non–nested experiments, we test for equal accuracy of two forecasts, from the

following models:

yt+1 = a0 + a1yt + a2yt−1 + a3x1,t + u1,t+1 (6)

yt+1 = b0 + b1yt + b2yt−1 + b3x2,t + u2,t+1. (7)

At each forecast origin t = R, ..., T , the parameters of the forecasting models are estimated

recursively by OLS. In the size experiments, at each forecast origin t, the observable time

series for each variable consists of an initial or first vintage estimate for period t, second

vintage estimates for periods t − 1 through t − 7, and final values for periods t − 8 and

earlier. In power experiments, the observable time series as of period t consist of initial

vintage estimates for periods t through t− 3 and final values for periods t− 4 and earlier.

However, in experiments without data revisions, the data samples consist solely of the final

data. As forecasting moves forward in time, the models are re-estimated with an expanding

sample of data.

In evaluating forecasts, we compute forecast errors using actual values of y taken to be

the initial estimate published in period t, yt(t) (except that we use the final value yt in

experiments without data revisions). In the size experiments, using the second estimate

published in period t + 1 yields very similar results. We form two versions of the MSE-t

test, one with a standard error of just an estimate of Sdd and the other with an estimate of

Sdd + 2Π(FBSdh + FBShhBF ′). In this draft, with the forecasts limited to the one–step

horizon, all HAC estimates in these variances are computed imposing a bandwidth of 0.

Both statistics are compared against critical values from the standard normal distribution.

We report the percentage of 10,000 simulations in which the null of equal accuracy is rejected

at the 5% significance level (using a critical value of ±1.96).

Finally, with quarterly data in mind, we consider a range of sample sizes. For simplicity,

we report results for a single R setting, of 80; other practical settings of R yield similar

results. We report results for four different P settings: 20, 40, 80, and 160 (corresponding

to π values of 0.2, 0.5, 1, and 2).

4.2 Monte Carlo design: nested case

In light of the possibility of a singularity in the variance Ω in the nested case, we begin

our nested model forecast analysis with a DGP simple enough that it allows us to easily

determine whether, even in the presence of predictable revisions, Ω is zero. In this simple
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case, the process generating the final data is as follows:

yt = uy,t (8)

xt = 3 + ux,t

uy,t, ux,t iid N(0, 1).

The variable x is never revised. The predictand y is subject to one revision: yt = κ+yt(t)+vt,

published one period after the initial estimate. To make the revisions predictable, we use κ

= 1. With this simple DGP, we first run simulations designed to verify our basic theoretical

results, using a setup that we can analytically verify as falling within our assumptions. In

these simulations, the null model of y is yt = u1,t; the forecast is then simply 0 (which

reduces −JB2J ′ + B2 to just B2). The alternative forecasting model is yt = a + bxt + u2,t.

We then consider an alternative setup in which we can analytically verify that F *= 0, but

that Ω = 0. In these simulations, the null model of y is yt = a + u1,t; the alternative is

yt = a + bxt + u2,t.

We also examine DGPs with a structure similar to that used in the non–nested case.

These DGPs relate y to lags of y and x, with x following an AR process. This basic VAR

structure generates the final or true values of y and x. The null model used to forecast y

includes just lags of y; the alternative model includes lags of y and x. To establish a baseline,

we first consider the properties of forecast tests based entirely on the final data. Data are

generated using independent draws of innovations from the standard normal distribution

and the autoregressive structure of the DGP. More specifically, the complete data generating

process for the final data takes the following form.

yt = −.4yt−1 − .3yt−2 + β3yt−3 + β4yt−4 + β22xt−1 + uy,t (9)

xt = 1.1xt−1 − .3xt−2 + ux,t

V ar

(
uy,t

ux,t

)

=




1.0
.25 .5





In size experiments, we use one DGP (NDGP 2) with β3 = -0.2, β4 = 0.1, and β22 = 0,

and another (NDGP 3) with β3 = 0, β4 = 0, and β22 = 0. We also consider versions of

these DGPs in which the residual in the y equation follows a GARCH process, parame-

terized to keep the unconditional variance the same as in the conditionally homoskedastic

parameterization:

uy,t =
√

stũy,t, ũy,t iid N(0, 1) (10)
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st = .1 + .6st−1 + .3u2
y,t−1

In power experiments, we report results for just one conditionally homoskedastic DGP, using

β3 = -0.2, β4 = 0.1, and β22 = 0.3 (as noted above, these parameterizations are drawn from

empirical estimates with inflation and an output gap). The forecasting models vary across

these experiments, as described below.

We focus on data subject to revision, supposing the final values are released with a delay.

We model and generate the revisions as we did for the non–nested case.

yt − yt(t + 1) = γy,1yt(t + 1) + v1,y,t (11)

xt − xt(t + 1) = γx,1xt(t + 1) + v1,x,t

yt(t + 1)− yt(t) = γy,2yt(t) + v2,y,t

xt(t + 1)− xt(t) = γx,2xt(t) + v2,x,t

In implementation, we generate the preliminary data with a simple iterative approach: from

the final data and draws of the errors v1,y,t and v1,x,t, we use the first two equations in (11)

to construct the second estimates, published in period t + 1; from those second estimates

and draws of the errors v2,y,t and v2,2,t, we use the last two equations (11) to construct the

initial estimates, published in period t. In the power experiments, we allow for a single

revision, with the final estimate published with a four-period delay:

yt − yt(t) = γy,1yt(t) + v1,y,t (12)

xt − xt(t) = γx,1xt(t) + v1,x,t

Our parameterizations of the revision processes are the same as in the non–nested case,

drawn from empirical estimates for real-time U.S. data on the change in GDP inflation and

the HP output gap from 1965 through 2003. The innovations in the revisions equations

are all iid normal random variables. In size experiments, the standard deviations of the

innovations v1,y,t, v1,x,t, v2,y,t, and v2,x,t are, respectively, 0.9, 1.3, 0.5, and 0.2. In power

experiments, the standard deviations of v1,y,t and v1,x,t are, respectively, 0.5 and 0.2. In the

baseline size experiments with predictable revisions, the γ coefficients are γy,1 = -0.2, γx,1

= -0.3, γy,2 = -0.05, and γx,2 = -0.2. In the baseline power experiments with predictable

revisions, the γ coefficients are γy,1 = -0.2 and γx,1 = -0.3.

In experiments for the DGP we refer to as NDGP 2, we consider forecasts from models
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of the form

yt+1 = a0 + a1yt + a2yt−1 + a3yt−2 + a4yt−3 + u1,t+1 (13)

yt+1 = b0 + b1yt + b2yt−1 + b3yt−2 + b4yt−3 + b5xt + u2,t+1. (14)

In experiments for NDGP 3, the forecasting models are

yt+1 = a0 + a1yt + a2yt−1 + u1,t+1 (15)

yt+1 = b0 + b1yt + b2yt−1 + b3yt−2 + b4yt−3 + b5xt + u2,t+1. (16)

At each forecast origin t = R, ..., T , the parameters of the forecasting models are estimated

recursively by OLS. In the size experiments with NDGP 1, at each forecast origin t, the

observable time series for y consists of an initial or first vintage estimate for period t and

final estimates for all prior periods; all of the observable data for x are the final data. In the

size experiments with NDGP 2 and NDGP 3, at each forecast origin t, the observable time

series for each variable consists of an initial or first vintage estimate for period t, second

vintage estimates for periods t − 1 through t − 7, and final values for periods t − 8 and

earlier. In power experiments, the observable time series as of period t consist of initial

vintage estimates for periods t through t− 3 and final values for periods t− 4 and earlier.

However, in experiments without data revisions, the data samples consist solely of the final

data. As forecasting moves forward in time, the models are re-estimated with an expanding

sample of data.

In evaluating forecasts, we compute forecast errors using actual values of yt taken to

be the initial estimate published in period t, yt(t) (except that we use the final value yt in

experiments without data revisions). In the size experiments with NDGP 2 and NDGP 3,

using the second estimate published in period t + 1 yields very similar results. The null

hypothesis is that the variables included in the larger model and not the smaller have no

predictive content. To test this null, from the forecast errors we form the MSE-F test and

various versions of the MSE-t test, and compare them to various sources of critical values.

We reject the null if the test statistic exceeds the relevant right-tail critical value (i.e., in the

nested case, we conduct one-sided tests). We report the percentage of 10,000 simulations

in which the null of equal accuracy is rejected at the 5% significance level.

More specifically, under π > 0 asymptotics, we construct the test statistic MSE-F =

P (MSE1 − MSE2)/MSE2 and compare it against asymptotic critical values from Mc-

Cracken (2006). We construct the conventional version of the MSE-t test, defined as
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MSE-t = P 1/2(MSE1 − MSE2)/Ŝ1/2
dd (note that Ŝdd = Γ̂dd(0) for τ = 1), and compare

it against critical values from McCracken (2006). We construct two other versions of the

MSE-t test based on alternative standard errors and compare them against standard nor-

mal critical values. These two versions use the following standard errors: the square root

of Ω̂ = 2Π̂F̂ (−JB̂1J ′ + B̂2)Ŝhh(−JB̂1J ′ + B̂2)F̂ ′ (note that the formula simplifies in the

NDGP 1 experiments because model 1 has no estimated parameters) and the square root

of Ω̂ = Ŝdd + 2Π̂F̂ (−JB̂1J ′ + B̂2)Ŝhh(−JB̂1J ′ + B̂2)F̂ ′.

Under π = 0 asymptotics, we compare the MSE-F test multiplied by (R/P )1/2 against

(π = 0) critical values from McCracken. We also compare the conventional MSE-t test

computed with the square root of Ŝdd and an MSE-t test using a standard error given by

the square root of Ω̂ = F̂ (−JB̂1J ′ + B̂2)Ŝhh (−JB̂1J ′ + B̂2)F̂ ′ against standard normal

critical values.

In all cases we estimate the pieces of the variance of the MSE differential as discussed

in the previous section, imposing the absence of serial correlation implied by the one–step

horizon, such that the long-run covariances Ŝdd, Ŝhh, and Ŝdh are estimated with just Γ̂dd(0),

Γ̂hh(0), and Γ̂dh(0), respectively.

Finally, with quarterly data in mind, we consider a range of sample sizes. In NDGP 1

experiments, to best check our theory results, we use combinations of P and R that yield π

values from quite small to quite large (smaller and larger than is typical in macro forecasting

studies): R = 100 with P = 10, 40, 100, and 400. In NDGP 2 and NDGP 3 experiments, we

use R = 80 with P = 20, 40, 80, and 160 (corresponding to π values of 0.2, 0.5, 1, and 2).

Again, our intention is to focus on sample sizes most relevant for real time macroeconomic

forecast analysis. Other practical settings of R yield similar results.

4.3 Monte Carlo results: non-nested case

Table 1 reports size results from simulations of various versions of NNDGP 1, varying in

the extent to which the data are revised.5 As a benchmark, we begin with the case in

which the data are not revised at all (first panel). Consistent with other evidence in the

literature, in this case, a conventional t-test for equal MSE (MSE-t using Sdd) tends to be

slightly oversized, with size ranging from 6 to 7 percent. With no revisions, the adjustment

term 2Π(FBSdh + FBShhBF ′) limits to zero, but in small samples tends to be small and
5The random numbers are generated such that the final data in the no revisions experiment are the same

as the final data in the experiment in which all variables are subject to noisy revisions.
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positive, causing the adjusted t-test to be modestly to slightly undersized, with size between

3 and 4 percent.

Consider now the size of the tests in the case of predictable revisions in all variables

(second panel). In this case, the unadjusted MSE-t test might be expected to be oversized,

more so for larger P/R than smaller P/R, because the variance in the test fails to account

for (understate) the variance impact of the predictable revisions. However, in practice,

the unadjusted test’s size is 5 percent for most sample sizes and 7 percent for P = 160.

Incorporating the adjustment called for by the asymptotic results in section 3 causes the

test to be significantly undersized, with size at 1 percent for most samples and 2 percent for

P = 160. Some supplemental simulations with larger sample sizes indicate these outcomes

reflect small sample properties, not a problem with the asymptotics. In simulations with

R = 320 and P = 60, 120, 240, and 480, the size of the adjusted test is 4 to 5 percent;

the size of the unadjusted test ranges from 7 to 11 percent. In simulations with R = 800

and P = 200, 400, 800, and 1600, the adjusted test is correctly sized, while the size of the

unadjusted test ranges from 9 to 20 percent.

Table 2 provides power results from simulations of NNDGP 1. In the benchmark case of

no data revisions (first panel), the unadjusted and adjusted MSE-t tests have very similar

power, ranging from 26 (unadjusted) vs. 29 (adjusted) percent for P = 20 to 99 percent

(both) for P = 160. Introducing noisy revisions to both the y and x variables significantly

lowers power, but very similarly for the unadjusted and adjusted test statistics, such that it

remains the case that the powers of the two tests are quite similar. For example, with P =

80, the unadjusted and adjusted MSE-t tests have power of 50 and 53 percent, respectively.

4.4 Monte Carlo results: nested case

In the nested forecast model case, we begin by using the very simple NDGP 1 to assess

the practical relevance of our theoretical results. Table 3 provides results for two versions

of the DGP, the first of which (left panel of numbers) uses a null model that relates y to

just an error, so that the null forecast is 0. Consistent with our theoretical results, with

noisy revisions in NDGP 1, the standard MSE-t and MSE-F statistics compared against

critical values from McCracken (2006) suffer huge size distortions, with size approaching the

50% level predicted by the theory. Comparing a conventional MSE-t test using Sdd as the

variance estimate against standard normal critical values also yields significant oversizing,

with size ranging from 21 (P = 10) to 43 (P = 400) percent. However, comparing the MSE-t
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test using 2ΠF (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′ as the variance (assuming π > 0) against

standard normal critical values yields roughly correct inferences, with nominal size at 6

percent. Similarly, the MSE-t test that uses Sdd+2ΠF (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′ as

the variance estimate is about correctly sized for all but the smallest sample size. This result,

too, confirms the asymptotic result that, with the predictable revisions, the conventional

variance Sdd has a population value of 0. Finally, as might be expected, using the variance

implied by the π = 0 asymptotics (FBShhBF ′ ) works reasonably well with P = 10, yielding

size of 6 percent, but more significant undersizing as P rises (relative to R).

To illustrate what happens when a singularity in Ω causes our asymptotic results to

break down, the right panel of Table 3 reports results from an experiment in which the

null forecasting model relates y to a constant and an error (so that the null forecast is

the mean of y), rather than to just an error (so the null forecast is 0) as in the previous

results. As noted above, in this case, it can be shown analytically that, although F *= 0

(with noisy revisions), a singularity makes Ω = 0. As a result, our proposed test may not

be reliable, but there is no reason to expect conventional tests based on other asymptotics

to be reliable, either. In the simulations, the most accurate test seems to be the MSE-F

test compared against π > 0 critical values, with size ranging from 3 to 6 percent (however,

using π = 0 asymptotics yields significant undersizing). The MSE-t test with conventional

variance Sdd compared against McCracken’s (2006) critical values is significantly oversized,

with size between 11 and 15 percent. The same test compared against standard normal

critical values is somewhat undersized (with size of 1 to 3 percent), except for very small

P . Even though Ω = 2ΠF (−JB1J ′ + B2)Shh(−JB1J ′ + B2)F ′ has a limiting value of 0,

in finite samples the MSE-t test using this variance estimate is a bit less oversized than

the conventional MSE-t test compared against McCracken’s critical values. The size of our

proposed test ranges from 9 to 11 percent. Accordingly, in finite samples, our asymptotic

approximation for the MSE-t test doesn’t seem to be materially worse than any other in

the event a singularity in the relevant variance renders all existing asymptotics invalid.

Moving on to more empirically relevant DGPs, Table 4 provides size results from NDGP

2 and NDGP 3. Again, as a benchmark, we consider experiments with no data revisions

(top panel). Consistent with results from our prior work, in this setting the MSE-F test and

MSE-t test based on Sdd compared against π > 0 critical values from McCracken (2006)

range from correctly sized to slightly oversized. For example, with NDGP 3, the sizes
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of these two tests vary from 4 to 6 percent. However, comparing the MSE-F test against

π = 0 critical values yields significant undersizing. Moreover, consistent with our prior work

and results in other studies such as Clark and West (2007), the conventional MSE-t test

based on Sdd and standard normal critical values is also significantly undersized, with size

ranging from 0 to 3 percent. Our proposed MSE-t test using a variance of 2ΠF (−JB1J ′ +

B2)Shh(−JB1J ′ + B2)F ′ and standard normal critical values, which has no asymptotic

justification in the absence of data revisions, ranges from significantly undersized (NDGP

3, P = 160) to oversized (NDGP 2, P = 20). Not surprisingly, given the preceding results,

the MSE-t test using a variance of variance of Sdd+2ΠF (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′

and standard normal critical values yields a consistently and significantly undersized test,

essentially never rejecting the null.

With noisy revisions in NDGP 2 and NDGP 3 (second panel of Table 4), the standard

MSE-t and MSE-F statistics compared against critical values from McCracken (2006) range

from being about correctly sized (MSE-t in NDGP 3, P = 20, 40, and 60) to significantly

oversized (MSE-F in NDGP 2, all P ). The conventional MSE-t test with Sdd as the variance

estimate and standard normal critical values is consistently undersized, with size ranging

from 1 to 3 percent. The performance of our proposed MSE-t test using 2ΠF (−JB1J ′ +

B2)Shh(−JB1J ′ + B2)F ′ as the variance (assuming π > 0) and standard normal critical

values is mixed, ranging from undersized (NDGP 3, P = 160) to oversized (NDGP 2, all

P ). Using a variance estimate that sums Sdd with 2ΠF (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′

again yields a poor result, essentially never rejecting the null. Admittedly, these results

suggest some practical limitations to the asymptotic results in section 3. Our asymptotic

theory implies the standard MSE-t and MSE-F statistics compared against critical values

from McCracken (2006) and MSE-t test with Sdd compared against standard normal critical

values should be oversized, unless a singularity makes Ω equal to 0. In contrast, the MSE-t

test with variance 2ΠF (−JB1J ′ + B2)Shh(−JB1J ′ + B2)F ′ should be correctly sized. In

broad terms, the results in the second panel are consistent with these implications, but

clearly the performance of the conventional tests is better and that of our proposed test

worse than the theory implies. One explanation could be that the asymptotic approxima-

tions are imperfect guides in finite samples. Another could be that the F matrix is not

non-zero, but it certainly is with predictable revisions in NDGP 2 and NDGP 3. Another

explanation could be that, for these DGPs, Ω is nonetheless 0 (large sample simulations
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seem to rule this out for NDGP 3, but suggest it could be the case for NDGP 2).

Because conditional heteroskedasticity should reduce the potential for singularities in

Ω (with predictable revisions), the last panel of Table 5 reports results for DGPs with

GARCH in the innovations of the y equation. However, the introduction of GARCH pro-

duces little change in results relative to the baseline with conditional homoskedasticity in

all innovations. In all cases, sizes are very similar across panels 2 and 3, with rejection rates

in the GARCH panel at most a percentage point different from those in the conditional

homoskedasticity (second) panel.

Table 5 provides power results from NDGP 3. Results for the benchmark case of no data

revisions (top panel) are in line with previous results in the literature. The MSE-F test

compared against asymptotic critical values (for π > 0) from McCracken (2006) is generally

more powerful than the MSE-t test using Sdd and McCracken’s critical values, which is

in turn considerably more power than the same MSE-t test compared against standard

normal critical values. Despite having no asymptotic justification in the absence of data

revisions, our proposed MSE-t test with variance 2ΠF (−JB1J ′ + B2)Shh(−JB1J ′ + B2)F ′

and standard normal critical values is at least as powerful as the other MSE-t variants, and

comparable in power to the MSE-F test. For example, with P = 40, the powers of the

MSE-F , conventional MSE-t against McCracken critical values, and adjusted MSE-t test

against standard normal critical values are, respectively, 71, 51, and 65 percent. As would

be expected in light of the relatively poor power of MSE-t with Sdd and standard normal

critical values, the variant using a variance of Sdd+2ΠF (−JB1J ′+B2)Shh(−JB1J ′+B2)F ′

has especially poor power, at 20 percent in the same example.

With predictable revisions (second panel of Table 5), the powers of all tests are signifi-

cantly lower than in the benchmark case of no revisions. It remains the case that the MSE-F

test compared against McCracken’s (2006) critical values (for which power ranges from 20

to 70 percent) is more powerful than a MSE-t test using Sdd and McCracken’s critical values

(for which power ranges from 12 to 63 percent). However, the relative power of the adjusted

MSE-t test with variance 2ΠF (−JB1J ′ + B2)Shh(−JB1J ′ + B2)F ′ and standard normal

critical values is better than in the no-revision baseline. For the P = 20 and 40 samples,

this test is significantly more powerful than MSE-F (with π > 0), rejecting the null 15-17

percent more frequently than the MSE-F test does. As P rises, though, the advantage of

the adjusted MSE-t dissipates, and even reverses for P = 160. Finally, data revisions make
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the power of the conventional MSE-t test with variance Sdd compared against standard

normal critical values abysmal, ranging from just 9 to 21 percent.

4.5 Monte Carlo summary

Overall, the Monte Carlo analysis confirms that, in practical applications, conventional

testing approaches that ignore the impact of predictable revisions can lead to incorrect

inferences. Our proposed testing approach that takes revisions into account can lead to

more reliable inferences, although not certainly so. In the non–nested case, an unadjusted

t-test for equal MSE modestly over-rejects the null. Our proposed adjusted test tends

to under-reject the null. Therefore, in practical applications with non–nested forecasts,

it is probably useful to consider both tests. In the nested case, the conventional MSE-F

and MSE-t tests compared against critical values from McCracken (2006) range from nearly

correctly sized to modestly to significantly oversized. The conventional MSE-t test compared

against standard normal critical values is severely undersized and has very low power. The

performance of our proposed adjusted MSE-t test seems to be mixed, as the test ranges

from modestly undersized to modestly oversized. Overall, for practical applications with

nested forecasts, it is probably a good idea to consider our proposed test in conjunction with

the conventional MSE-F and MSE-t tests compared against critical values from McCracken

(2006).

5 Application to Inflation Forecasting

In this section we use the tests and inference approaches described above to determine

whether, in real time data, various measures of economic activity have predictive content

for inflation. The inflation measure we forecast is the change in the inflation rate of the

GDP price index. We consider one–quarter and one–year ahead forecasts of inflation from

an AR model, a model including lags of the change in inflation and GDP growth, and a

model including lags of the change in inflation and the output gap (HP detrended output).

To illustrate non–nested testing, we compare forecasts from the model with GDP growth

to the model with the output gap. To illustrate nested testing, we compare forecasts from

the model with GDP growth to the AR model. Real-time evidence in Orphanides and van

Norden (2005) suggests that GDP growth may be superior to the output gap for forecasting

inflation, as well as to the AR model.
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5.1 Data

Data on real output and the price index are taken from the Federal Reserve Bank of Philadel-

phia’s Real–Time Data Set for Macroeconomists (RTDSM). For simplicity, we simply use

the notation “GDP” and “GDP price index” to refer to the output and price series, even

though the measures are based on GNP and a fixed weight deflator for much of the sample.

The full forecast evaluation period runs from 1970:Q1 through 2003:Q4. As described in

Croushore and Stark (2001), the vintages of the RTDSM are dated to reflect the infor-

mation available around the middle of each quarter. Normally, in a given vintage t, the

available NIPA data run through period t−1.6 For each forecast origin t in 1970:Q1 through

2003:Q4, we use the real time data vintage t to estimate output gaps, (recursively) estimate

the forecast models, and then construct forecasts for periods t and beyond. The starting

point of the model estimation sample is always 1961:1+τ − 1, where τ denotes the forecast

horizon.

In evaluating real time forecast accuracy, we consider a range of possible definitions

(vintages) of actual inflation. One estimate is the first one available in the RTDSM, one

quarter after the end of the forecast observation date (i.e., inflation for period t published in

period t+1). Another is the second estimate or vintage available in the RTDSM, published

with a two–quarter delay. Studies such as Romer and Romer (2000) use the second available

estimates of the GDP/GNP deflator as actuals in evaluating forecast accuracy. We also

consider estimates of inflation published with delays of five and 13 periods.

5.2 Models

Following Stock and Watson (1999, 2003), among many others, we treat inflation as being

close enough to I(1) to warrant imposing a unit root and compare forecasts of the change in

inflation from Phillips curve specifications including different measures of economic activity

(GDP growth or the output gap) to forecasts from a simple autoregressive model. We report

forecast results for the two horizons that seem to be most widely used in previous studies

and most interesting to policymakers: one quarter and one year.

Letting τ denote the forecast horizon (in quarters), we use reduced–form Phillips curves

π(τ)
t+τ − πt = α0 +

L−1∑

l=0

αl∆πt−l + βxt + uPC,t+τ , (17)

6In the case of the 1996:Q1 vintage, with which the BEA published a benchmark revision, the data run
through 1995:Q3 instead of 1995:Q4.
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where inflation is π(τ)
t ≡ (400/τ) ln(pt/pt−τ ), π(1)

t ≡ πt, and xt is a measure of economic

activity. The same basic model specification has been used in studies such as Stock and

Watson (1999, 2003) and Clark and McCracken (2006). In one version of this model, the

xt variable is defined as the four–quarter GDP growth rate, 100 ln(GDPt/GDPt−4). In the

other, xt is defined as (100 times) HP-detrended log GDP. In both models, the lag order L

is 4.

In addition to comparing forecasts from one version of (17) with GDP growth to another

with the output gap, we compare forecasts from the model with GDP growth to forecasts

from an AR model for the change in inflation. Following the aforementioned studies, this

AR model takes the form

π(τ)
t+τ − πt = α0 +

M−1∑

l=0

αl∆πt−l + uAR,t+τ . (18)

We use an AR model lag order of M = 2.

In computing the various versions of the MSE-t test, we use the Newey and West (1987)

estimator of the long-run variances Sdd, Sdh, and Shh, with a bandwidth of 2(τ−1) (following

Cochrane (1991)).

5.3 Results

As a first step, in Table 6 we document the predictability of revisions to (quarterly) GDP

growth, the HP output gap, and changes in GDP inflation. Following Croushore and Stark

(2003), we report correlations of various revisions to the variable of interest with various

vintages of estimates. For example, the first element of each block provides the correlation

of (1) the second available estimate of the variable in question less the first estimate of the

variable (the first revision) with (2) the first available estimate of the variable. A negative

correlation of a revision with an estimate available at the time of the baseline estimate

in the revision means the revision is predictable. The reported correlations are based on a

sample period of 1965:Q4 through 2003:Q4. Our correlations for GDP growth, shown in the

top block, are quite similar to those in Croushore and Stark (2003), suggesting some noise

component in real time GDP growth estimates. Our estimates for the HP output gap, given

in the middle block, point to somewhat stronger predictability of revisions to the HP output

gap. For example, the correlation of the first revision of the gap with the first estimate of

the gap is -.87; the correlation of the revision from the second estimate to the estimate

available two years later with the second estimate of the output gap is -.30. Estimates for
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the change in GDP inflation in the last block also point to some predictability of revisions.

The correlation of the first revision of the inflation change with the first estimate of the

change are -.15; the correlation of the revision from the second estimate to the estimate

available two years later with the second estimate of (the change in) inflation is -.45.

Table 7 presents results for the (non–nested) comparison of forecasts from the mod-

els with GDP growth (model 1) and the output gap (model 2). For most samples and

definitions of actuals, although not all, the model with GDP growth yields slightly more

accurate forecasts. The advantage of the model with GDP growth is considerably greater

in year-ahead forecasts than one quarter-ahead forecasts. However, there is little evidence

of statistical significance in the forecast accuracy differences. If the conventional variance

Sdd is used in forming the t-test, the null of equal accuracy is rejected only once at the

one–step horizon (for the 1985-2003 sample using the inflation estimates published with a

13 period delay as actuals), but for all 1970-2003 and 1985-2003 samples at the one–year

ahead horizon. Consistent with our theory and Monte Carlo evidence, in most cases, tak-

ing account of the potential for predictability in the data revisions raises the estimated

standard error. At the one–step horizon, though, the impact is pretty small in most cases,

particularly in results for the 1970-2003 and 1970-84 samples. At the one–step horizon, the

adjustment has a bigger impact in the 1985-2003 results. Most notably, for the 1985-2003

sample using the inflation estimates published with a 13 period delay as actuals, the null

of equal accuracy is not rejected based on the adjusted variance estimate, but it is when

based on the unadjusted variance. The adjustment has a considerably bigger impact in the

one–year ahead forecasts. The rejections of equal accuracy for all 1970-2003 and 1985-2003

samples based on the t-test using Sdd go away when the test uses the adjusted variance Ω.

Table 8 provides results for the (nested) comparison of forecasts from the AR(2) model

(model 1) and the model with four lags of inflation and GDP growth (model 2). For nearly all

samples and definitions of actuals, the forecasts from the model with GDP growth are more

accurate than the AR(2) forecasts, slightly so at the one–step horizon and more substantially

at the one–year horizon. When we abstract from the potential impact of predictable data

revisions on test behavior, and compare the MSE-F test and MSE-t test using Sdd to (π > 0)

asymptotic critical values simulated as described in Clark and McCracken (2005), for most

definitions of actual inflation we reject the null AR model with the full 1970-2003 sample

of forecasts and the 1985-2003 sample.7 At the one-year horizon, the null is also always
7Because of the serial correlation and possible heteroskedasticity in the forecast errors, we use the Monte
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rejected for the 1970-84 sample. If the same MSE-t test is compared against standard

normal critical values (1.282 for a one-sided 10% test), for one–step ahead forecasts the

null is consistently rejected for the 1985-2003 sample but never rejected for the 1970-2003

period. For one–year ahead forecasts, the null AR model is nearly always rejected for

the 1970-2003 and 1970-84 samples, but never for the 1985-2003 period. However, in the

presence of data revisions, the tests based on McCracken’s asymptotics are prone to over-

rejecting the null; the conventional MSE-t compared against the standard normal generally

under-rejects. Taking account of data revisions by using a variance of Ω = 2ΠF (−JB1J ′ +

B2)Shh(−JB1J ′ + B2)F ′ in the MSE-t test increases the (absolute) value of the t–statistic

in all but one case. However, at the one–step horizon, in only two cases — forecasts for

1970-2003 and 1970-84 evaluated with first available estimates of inflation — is the adjusted

t–statistic significant when the unadjusted t–statistic (compared against standard normal

critical values) is not. At the one–year horizon, using the adjusted standard error has a big

impact on inference for the 1985-2003 sample, with the adjusted t-test rejecting the null

and the unadjusted test not rejecting for three of the four definitions of actual inflation.

Overall, at the one–year ahead horizon, the adjusted MSE-t test confirms the strong

evidence in favor of the model with GDP growth for all samples. At the one-step horizon,

adjusted MSE-t test confirms the strong evidence in favor of the model with GDP growth

for the 1985-2003 sample. However, the adjusted test indicates the evidence in favor of the

model for the 1970-2003 sample to be much weaker than do the tests based on McCracken’s

(2006) asymptotics. For the 1970-2003 sample, the adjusted t-test rejects the null only once,

with the first available definition of actuals; the tests compared against critical values from

McCracken’s asymptotics reject the null for all four definitions of actuals.

6 Conclusion

In this paper we derive the limiting distributions for tests of equal predictive ability when

forecasting with real time vintage data. Specifically, we address the impact of revisions

exhibiting news and noise on the asymptotic distributions of the t–statistic for equal MSE

between non-nested models developed by Diebold and Mariano (1995) and West (1996)

and the F– and t–type tests of equal MSE between nested models developed in Clark

and McCracken (2005) and McCracken (2006). We show that when revised data is used

Carlo method outlined in Clark and McCracken (2005) to compute critical values based on the Clark and
McCracken (2005) and McCracken (2006) asymptotics for the MSE-F and MSE-t tests.
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to construct and evaluate forecasts these tests typically do not have the same asymptotic

distributions as when the data is never revised. With these new distributions in hand, we

show how to conduct asymptotically valid inference. In the cases we consider, the tests are

asymptotically standard normal and hence inference can be conducted using the relevant

tables.

Using our asymptotics, we then conduct a range of Monte Carlo simulations to examine

the finite–sample properties of the tests. Overall, these results broadly confirm our asymp-

totic approximations. In terms of size, ignoring the data revisions can produce oversized

tests. Taking revisions into account by using our proposed tests can yield more reliable

inferences. Data vintage also has an impact on the power of the tests. Typically, power

is lower in data subject to revision than in data that are unrevised. The revisions drive a

wedge between the properties of the dependent variable defining the predictive model and

that used for evaluation. Depending on the exact relationships across vintages, predictive

content for one vintage need not imply the same for another.

In the final part of our analysis, we illustrate the usage of our tests with an application

to competing forecasts of U.S. inflation.
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Table 1. Non-Nested Model Size Results, NNDGP 1
(R = 80, nominal size = 5%)

test variance P = 20 40 80 160
no revisions

MSE-t Sdd .07 .06 .06 .06
adj. MSE-t Sdd + 2Π(FBSdh + FBShhBF ′) .03 .03 .04 .04

predictable revisions
MSE-t Sdd .05 .05 .05 .07
adj. MSE-t Sdd + 2Π(FBSdh + FBShhBF ′) .01 .01 .01 .02

Notes:
1. The DGPs are defined in equations (3) and (4). The forecasting models are given in equations (6) and
(7).
2. R defines the size of the sample used to generate the first forecast. P defines the number of observations
in the forecast sample. The number of Monte Carlo replications is 10,000.
3. The second column gives the variance estimator used in the test statistic. All test statistics are compared
against standard normal critical values of ±1.96.
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Table 2. Non-Nested Model Power Results, NNDGP 1
(R = 80, nominal size = 5%)

test variance P = 20 40 80 160
no revisions

MSE-t Sdd .29 .52 .82 .99
adj. MSE-t Sdd + 2Π(FBSdh + FBShhBF ′) .26 .51 .83 .99

predictable revisions
MSE-t Sdd .17 .28 .50 .80
adj. MSE-t Sdd + 2Π(FBSdh + FBShhBF ′) .16 .28 .53 .84

Notes:
1. The DGPs are defined in equations (3) and (5). The forecasting models are given in equations (6) and
(7).
2. See the notes to Table 1.
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Table 3. Nested Model Size Results, NDGP 1
(R = 100, nominal size = 5%)

null forecast = 0 null forecast = mean
test variance c.v. P = 10 40 100 400 P = 10 40 100 400
π > 0:
MSE-F M .08 .24 .37 .47 .03 .03 .04 .06
MSE-t Sdd M .27 .40 .45 .49 .12 .11 .12 .15
adj. MSE-t 2ΠFB̃ShhB̃F ′ N .06 .06 .06 .06 .09 .10 .11 .11
adj. MSE-t Sdd + 2ΠFB̃ShhB̃F ′ N .02 .04 .05 .05 .00 .00 .00 .00

π = 0:
MSE-F M .00 .03 .18 .37 .00 .00 .00 .01
MSE-t Sdd N .21 .33 .38 .43 .06 .03 .02 .01
adj. MSE-t FBShhBF ′ N .06 .04 .03 .00 .08 .09 .08 .06

Notes:
1. The DGP is defined in equation (8). In the left panel of results, the null forecasting model is yt = u1,t

(so the null forecast is 0). In the right panel, the null forecasting model is yt = a + u1,t. In both cases, the
alternative forecasting model is yt = a + bxt + u2,t.
2. R defines the size of the sample used to generate the first forecast. P defines the number of observations
in the forecast sample. The number of Monte Carlo replications is 10,000.
3. The second column gives the variance estimator used in the MSE-t statistics. The matrix B̃ is shorthand
for −JB1J

′ + B2. The third column indicates what critical value is used. An ‘M’ means the critical value is
taken from McCracken (2006); an ‘N’ means the critical value is taken from the standard normal distribution
(1.645). All tests are one-sided, with the null rejected if the statistic exceeds the right-tail critical value.
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Table 4. Nested Model Size Results, NDGPs 2 and 3
(R = 100, nominal size = 5%)

test variance c.v. P = 20 40 80 160 P = 20 40 80 160
π > 0: NDGP 2, no revisions NDGP 3, no revisions
MSE-F M .07 .06 .05 .05 .06 .05 .05 .04
MSE-t Sdd M .08 .06 .06 .05 .06 .05 .05 .04
adj. MSE-t 2ΠFB̃ShhB̃F ′ N .09 .08 .07 .05 .05 .04 .03 .01
adj. MSE-t Sdd + 2ΠFB̃ShhB̃F ′ N .00 .00 .00 .00 .00 .00 .00 .00
π = 0:
MSE-F M .01 .01 .01 .02 .00 .00 .00 .00
MSE-t Sdd N .03 .02 .01 .00 .02 .01 .00 .00
adj. MSE-t FBShhBF ′ N .08 .07 .05 .04 .04 .03 .02 .01
π > 0: NDGP 2, noise NDGP 3, noise
MSE-F M .12 .11 .11 .13 .08 .07 .07 .08
MSE-t Sdd M .07 .07 .08 .10 .05 .04 .06 .08
adj. MSE-t 2ΠFB̃ShhB̃F ′ N .09 .09 .09 .08 .05 .04 .03 .02
adj. MSE-t Sdd + 2ΠFB̃ShhB̃F ′ N .00 .00 .00 .00 .00 .00 .00 .00
π = 0:
MSE-F M .02 .03 .04 .05 .01 .01 .01 .02
MSE-t Sdd N .03 .02 .01 .01 .02 .01 .01 .01
adj. MSE-t FBShhBF ′ N .09 .08 .07 .05 .04 .03 .02 .01
π > 0: NDGP 2, GARCH NDGP 3, GARCH
MSE-F M .13 .12 .12 .14 .09 .07 .07 .08
MSE-t Sdd M .08 .07 .09 .11 .05 .04 .06 .07
adj. MSE-t 2ΠFB̃ShhB̃F ′ N .10 .10 .09 .09 .05 .04 .03 .02
adj. MSE-t Sdd + 2ΠFB̃ShhB̃F ′ N .01 .00 .01 .00 .00 .00 .00 .00
π = 0:
MSE-F M .02 .03 .05 .06 .01 .01 .01 .02
MSE-t Sdd N .03 .02 .02 .01 .02 .01 .01 .01
adj. MSE-t FBShhBF ′ N .09 .09 .08 .06 .04 .03 .02 .01

Notes:
1. The DGPs are defined in equations (9) and (11). The NDGP 2 forecasting models are given in equations
(13) and (14). The NGDP 3 forecasting models are given in equations (15) and (16). In the last panel, the
residuals of the y equation are generated to follow the GARCH(1,1) process given in equation (10).
2. R defines the size of the sample used to generate the first forecast. P defines the number of observations
in the forecast sample. The number of Monte Carlo replications is 10,000.
3. The second column gives the variance estimator used in the MSE-t statistics. The matrix B̃ is shorthand
for −JB1J

′ + B2. The third column indicates what critical value is used. An ‘M’ means the critical value is
taken from McCracken (2006); an ‘N’ means the critical value is taken from the standard normal distribution
(1.645). All tests are one-sided, with the null rejected if the statistic exceeds the right-tail critical value.
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Table 5. Nested Model Power Results, NDGP 3
(R = 100, nominal size = 5%)

test variance c.v. P = 20 40 80 160
π > 0: NDGP 3, no revisions
MSE-F M .56 .71 .89 .99
MSE-t Sdd M .34 .51 .81 .98
adj. MSE-t 2ΠFB̃ShhB̃F ′ N .53 .65 .82 .95
adj. MSE-t Sdd + 2ΠFB̃ShhB̃F ′ N .13 .20 .37 .68
π = 0:
MSE-F M .20 .43 .73 .96
MSE-t Sdd N .17 .24 .41 .71
adj. MSE-t FBShhBF ′ N .52 .63 .77 .92
π > 0: NDGP 3, noise
MSE-F M .20 .27 .48 .70
MSE-t Sdd M .12 .22 .40 .63
adj. MSE-t 2ΠFB̃ShhB̃F ′ N .37 .42 .49 .60
adj. MSE-t Sdd + 2ΠFB̃ShhB̃F ′ N .07 .08 .11 .19
π = 0:
MSE-F M .40 .47 .62 .78
MSE-t Sdd N .09 .10 .13 .21
adj. MSE-t FBShhBF ′ N .36 .39 .43 .50

Notes:
1. The DGP is defined in equations (9) and (12). The forecasting models are given in equations (15) and
(16).
2. See the notes to Table 4.
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Table 6. Correlations of Revisions with Real Time Data
(1965:Q4–2003:Q4 data )

actual estimate from period:
revision: t + 1 t + 2 t + 9 final

GDP growth
t + 2 est. – t + 1 est. .20 .41 .43 .35
t + 9 est. – t + 1 est. -.11 .02 .34 .23
final est. – t + 1 est. -.25 -.18 -.01 .39
t + 9 est. – t + 2 est. -.25 -.23 .14 .06
final est. – t + 2 est. -.33 -.33 -.16 .27

HP output gap
t + 2 est. – t + 1 est. -.87 -.78 -.31 -.26
t + 9 est. – t + 1 est. -.53 -.47 .38 .40
final est. – t + 1 est. -.57 -.51 .29 .41
t + 9 est. – t + 2 est. -.36 -.30 .55 .55
final est. – t + 2 est. -.41 -.37 .43 .56

Change in GDP inflation
t + 2 est. – t + 1 est. -.15 .21 .13 .06
t + 9 est. – t + 1 est. -.45 -.31 .26 -.04
final est. – t + 1 est. -.64 -.54 -.30 .24
t + 9 est. – t + 2 est. -.40 -.45 .21 -.08
final est. – t + 2 est. -.58 -.64 -.37 .21

Notes:
1. For each variable, the table reports correlations between revisions and estimates of GDP growth, the
HP output gap, and the change in inflation. The revisions are constructed as a later estimate minus an
earlier estimate, specified in the first column of the table. The estimates of actual growth, etc., are taken
from various vintages, given in the column headers. “Final” refers to the 2007:Q1 vintage of data from the
RTDSM.
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Table 7. Results for Non-Nested Model Inflation Forecasts
sample MSE1 MSE2 MSE1 - MSE2

√
Sdd/P

√
Ω/P t(Sdd) t(Ω)

1-step horizon
actual inflationt = estimate published in t + 1

1970-2003 2.164 2.181 -.017 .171 .179 -.100 -.096
1970-1984 3.791 3.758 .033 .379 .366 .086 .089
1985-2003 .880 .937 -.056 .059 .078 -.964 -.726

actual inflationt = estimate published in t + 2
1970-2003 2.311 2.372 -.061 .165 .174 -.372 -.353
1970-1984 4.033 4.073 -.040 .365 .358 -.111 -.113
1985-2003 .951 1.029 -.078 .061 .078 -1.285 -1.004

actual inflationt = estimate published in t + 5
1970-2003 2.481 2.447 .034 .191 .190 .179 .179
1970-1984 4.489 4.314 .174 .427 .387 .408 .450
1985-2003 .896 .972 -.076 .051 .075 -1.498 -1.018

actual inflationt = estimate published in t + 13
1970-2003 2.252 2.438 -.186 .185 .212 -1.005 -.877
1970-1984 4.196 4.512 -.315 .416 .449 -.759 -.702
1985-2003 .717 .801 -.084 .044 .073 -1.918∗ -1.157

4-step horizon
actual inflationt = estimate published in t + 1

1970-2003 1.563 1.933 -.371 .216 .255 -1.714∗ -1.455
1970-1984 2.925 3.591 -.665 .471 .585 -1.413 -1.138
1985-2003 .541 .691 -.150 .079 .106 -1.896∗ -1.407

actual inflationt = estimate published in t + 2
1970-2003 1.984 2.361 -.378 .222 .266 -1.703∗ -1.420
1970-1984 3.908 4.580 -.673 .484 .631 -1.389 -1.066
1985-2003 .541 .697 -.156 .080 .109 -1.956∗ -1.432

actual inflationt = estimate published in t + 5
1970-2003 1.960 2.424 -.464 .257 .314 -1.804∗ -1.478
1970-1984 3.866 4.733 -.868 .556 .715 -1.560 -1.214
1985-2003 .532 .692 -.161 .076 .112 -2.122∗ -1.432

actual inflationt = estimate published in t + 13
1970-2003 1.994 2.528 -.533 .300 .356 -1.778∗ -1.496
1970-1984 3.913 5.005 -1.092 .642 .815 -1.701∗ -1.339
1985-2003 .555 .670 -.114 .054 .107 -2.102∗ -1.071

Notes:
1. The table compares the accuracy of real-time forecasts of the change in GDP inflation, from equation
(17). Model 1 uses xt = four-quarter GDP growth; Model 2 uses xt = the output gap, computed with the
HP filter. The models are estimated recursively, with the sample beginning in 1961:1+τ -1.
2. The MSEs are defined as annualized percentage points. MSE1 refers to the mean square error of forecasts
from the model with GDP growth; MSE2 refers to the mean square error of forecasts from the model with
the output gap. The MSEs are based on forecasts computed with various definitions of actual inflation used
in computing forecast errors. The first panel takes actual to be the first available estimate of inflation; the
next the second available estimate; and so on.
3. The variance Ω is defined as Sdd + 2Π(FBSdh + FBShhBF ′). The columns t(Sdd) and t(Ω) report
t-statistics for the difference in MSEs computed with the variances Sdd and Ω, respectively. An ∗ denotes a
rejection of the null of equal accuracy at a significance level of 10% or better.
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Table 8. Results for Nested Model Inflation Forecasts
sample MSE1 MSE2 MSE1 - MSE2

√
Sdd/P

√
Ω/P t(Sdd) t(Ω) MSE-F

1-step horizon
actual inflationt = estimate published in t + 1

1970-2003 2.368 2.164 .203 .176 .099 1.159∗ 2.055∗ 12.786∗

1970-1984 4.096 3.791 .305 .390 .218 .782∗ 1.399∗ 4.829∗

1985-2003 1.003 .880 .123 .061 .059 2.026∗ 2.079∗ 10.644∗

actual inflationt = estimate published in t + 2
1970-2003 2.359 2.311 .048 .164 .086 .294∗ .558 2.841∗

1970-1984 3.986 4.033 -.047 .365 .264 -.128 -.176 -.692
1985-2003 1.074 .951 .123 .056 .068 2.191∗ 1.804∗ 9.834∗

actual inflationt = estimate published in t + 5
1970-2003 2.565 2.481 .085 .182 .102 .466∗ .829 4.646∗

1970-1984 4.504 4.489 .016 .406 .278 .039 .057 .211
1985-2003 1.035 .896 .139 .053 .045 2.622∗ 3.101∗ 11.813∗

actual inflationt = estimate published in t + 13
1970-2003 2.297 2.252 .045 .162 .090 .278∗ .499 2.713∗

1970-1984 4.221 4.196 .025 .362 .251 .068 .098 .351
1985-2003 .778 .717 .061 .042 .013 1.467∗ 4.538∗ 6.470∗

4-step horizon
actual inflationt = estimate published in t + 1

1970-2003 2.170 1.563 .607 .413 .151 1.469∗ 4.019∗ 52.833∗

1970-1984 4.262 2.925 1.337 .884 .488 1.511∗ 2.739∗ 27.413∗

1985-2003 .601 .541 .060 .122 .024 .492∗ 2.549∗ 8.435∗

actual inflationt = estimate published in t + 2
1970-2003 2.648 1.984 .664 .493 .169 1.347∗ 3.927∗ 45.501∗

1970-1984 5.378 3.908 1.471 1.071 .549 1.373∗ 2.678∗ 22.579∗

1985-2003 .599 .541 .059 .122 .028 .481∗ 2.064∗ 8.236
actual inflationt = estimate published in t + 5

1970-2003 2.600 1.960 .640 .477 .157 1.341∗ 4.075∗ 44.368∗

1970-1984 5.277 3.866 1.412 1.034 .488 1.365∗ 2.891∗ 21.909∗

1985-2003 .592 .532 .061 .133 .015 .455∗ 4.152∗ 8.664∗

actual inflationt = estimate published in t + 13
1970-2003 2.531 1.994 .536 .468 .134 1.145∗ 4.018∗ 36.580∗

1970-1984 5.224 3.913 1.311 1.012 .477 1.296∗ 2.751∗ 20.109∗

1985-2003 .510 .555 -.045 .117 .046 -.382 -.975 -6.137

Notes:
1. The table compares the accuracy of real-time forecasts of the change in GDP inflation, from equations
(17) ( MSE1) and (18) (MSE2), with xt measured as four-quarter GDP growth. The models are estimated
recursively, with the sample beginning in 1961:1+τ -1.
2. The MSEs are based on forecasts computed with various definitions of actual inflation used in computing
forecast errors. The first panel takes actual to be the first available estimate of inflation; the next the second
available estimate; and so on.
3. The variance Ω is defined as 2ΠF (−JB1J

′ + B2)Shh(−JB1J
′ + B2)F

′. The columns t(Sdd) and t(Ω)
report t-statistics for the difference in MSEs computed with the variances Sdd and Ω, respectively. An ∗

denotes a rejection of the null of equal accuracy at a significance level of 10% or better, for the following:
t(Sdd) vs. critical values simulated as in Clark and McCracken (2005); t(Ω) vs. standard normal critical
values; and MSE-F vs. critical values simulated as in Clark and McCracken (2005).
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