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1 Introduction

Aggregate business conditions are of central importance in the business, finance, and policy

communities, worldwide, and huge resources are devoted to assessment of the continuously-

evolving state of the real economy. Literally thousands of newspapers, newsletters, television

shows, and blogs, not to mention armies of employees in manufacturing and service industries,

including the financial services industries, central banks, government and non-government

organizations, grapple constantly with the measurement and forecasting of evolving business

conditions. Of central importance is the constant grappling. Real economic agents, making

real decisions, in real time, want accurate and timely estimates of the state of real activity.

Business cycle chronologies such as the NBER’s, which proclaim expansions and contractions

long after the fact, are not useful in that regard.

Against this background, we propose and illustrate a framework for high-frequency busi-

ness conditions assessment in a systematic, replicable, and statistically optimal manner. Our

framework has four key ingredients.

Ingredient 1. We work with a dynamic factor model, treating business conditions as an

unobserved variable, related to observed indicators. Latency of business conditions is con-

sistent with economic theory (e.g. Lucas, 1977), which emphasizes that the business cycle

is not about any single variable, whether GDP, industrial production, sales, employment,

or anything else. Rather, the business cycle is about the dynamics and interactions (“co-

movements”) of many variables.

Treating business conditions as latent is also a venerable tradition in empirical business

cycle analysis, ranging from the earliest work to the most recent, and from the statistically

informal to the statistically formal. On the informal side, latency of business conditions is

central to many approaches, from the classic early work of Burns and Mitchell (1946) to

the recent workings of the NBER business cycle dating committee, as described for example

by Hall et al. (2003). On the formal side, latency of business conditions is central to the

popular dynamic factor framework, whether from the “small data” perspective of Geweke

(1977), Sargent and Sims (1977), Stock and Watson (1989, 1991) and Diebold and Rudebusch

(1996), or the more recent “large data” perspective of Forni, Hallin, Lippi and Reichlin

(2000), Stock and Watson (2002) and Bai and Ng (2006). (For discussion of small-data vs.

large-data dynamic factor modeling, see Diebold (2003).)

Ingredient 2. We explicitly incorporate business conditions indicators measured at differ-

ent frequencies. Important business conditions indicators do in fact arrive at a variety of

frequencies, including quarterly (e.g., GDP), monthly (e.g., industrial production), weekly
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(e.g., employment), and continuously (e.g., asset prices), and we want to be able to incorpo-

rate all of them, to provide continuously-updated measurements.

Ingredient 3. We explicitly incorporate indicators measured at high frequencies. Given

that our goal is to track the high-frequency evolution of real activity, it is important to

incorporate (or at least not exclude from the outset) the high-frequency information flow

associated with high-frequency indicators.

Ingredient 4. We extract and forecast latent business conditions using linear yet statisti-

cally optimal procedures, which involve no approximations. The appeal of exact as opposed

to approximate procedures is obvious, but achieving exact optimality is not trivial, due to

complications arising from temporal aggregation of stocks vs. flows in systems with mixed-

frequency data.

Related to our concerns and framework is a small but nevertheless important literature,

including Stock and Watson (1989, 1991), Mariano and Murasawa (2003), Evans (2005) and

Proietti and Moauro (2006), as well as Shen (1996), Abeysinghe (2000), Altissimo et al.

(2002), Liu and Hall (2001), McGuckin, Ozyildirim and Zarnowitz (2003), Ghysels, Santa

Clara and Valkanov (2004), and Giannone, Reichlin and Small (2008).

Our contribution is different in certain respects, and similar in others, and both the dif-

ferences and similarities are intentional. Let us begin by highlighting some of the differences.

First, some authors like Stock and Watson (1989, 1991) work in a dynamic factor framework

with exact linear filtering, but they don’t consider data at mixed frequencies or at high

frequencies.

Second, other authors like Evans (2005) do not use a dynamic factor framework and do not

use high-frequency data, instead focusing on estimating high-frequency GDP. Evans (2005),

for example, equates business conditions with GDP growth and uses state space methods to

estimate daily GDP growth using data on preliminary, advanced and final releases of GDP

and other macroeconomic variables.

Third, authors like Mariano and Murasawa (2003) work in a dynamic factor framework

and consider data at mixed frequencies, but not high frequencies, and their filtering al-

gorithm is only approximate. Proietti and Moauro (2006) avoid the Mariano-Murasawa

approximation at the cost of moving to a non-linear model with a corresponding rather

tedious non-linear filtering algorithm.

Ultimately, however, the similarities between our work and others’ are more important

than the differences, as we stand on the shoulders of many earlier authors. Effectively we

(1) take a small-data dynamic factor approach to business conditions analysis, (2) recognize
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the potential practical value of extending the approach to mixed-frequency data settings

involving some high-frequency data, (3) recognize that doing so amounts to a filtering prob-

lem with a large amount of missing data, which the Kalman filter is optimally designed to

handle, and (4) provide a prototype example of the framework in use. Hence the paper is

really a “call to action,” a call to move the state-space dynamic-factor framework closer to

its high-frequency limit, and hence to move statistically-rigorous business conditions analysis

closer to its high-frequency limit.

We proceed as follows. In section 2 we provide a detailed statement of our dynamic-factor

modeling framework, and in section 3 we represent it as a state space filtering problem with a

large amount of missing data. In section 4 we report the results of a four-indicator prototype

empirical analysis, using quarterly GDP, monthly employment, weekly initial jobless claims,

and the daily yield curve term premium. In section 5 we report the results of a simulation

exercise, calibrated to our empirical estimates, which lets us illustrate our methods and assess

their efficacy in a controlled environment. In section 6 we conclude and offer directions for

future research.

2 The Modeling Framework

Here we propose a dynamic factor model at daily frequency. The model is very simple at

daily frequency, but of course the daily data are generally not observed, so most of the

data are missing. Hence we explicitly treat missing data and temporal aggregation, and we

obtain the measurement equations for observed stock and flow variables. Following that, we

enrich the model by allowing for lagged state variables in the measurement equations, and

by allowing for trend, both of which are important when fitting the model to macroeconomic

and financial indicators.

2.1 The Dynamic Factor Model at Daily Frequency

We assume that the state of the economy evolves at a very high frequency; without loss of

generality, call it “daily.” In our subsequent empirical work, we will indeed use a daily base

observational frequency, but much higher (intra-day) frequencies could be used if desired.

Economic and financial variables, although evolving daily, are of course not generally observed

daily. For example, an end-of-year wealth variable is observed each December 31, and is

unobserved every other day of the year.
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Let xt denote underlying business conditions at day t, which evolve daily with AR(p)

dynamics,

xt = ρ1xt−1 + ρ2xt−2 + ... + ρpxt−p + et, (1)

where et is a white noise innovation with unit variance. We are interested in tracking and

forecasting real activity, so we use a single-factor model; that is, xt is a scalar, as for example

in Stock and Watson (1989). Additional factors could be introduced to track, for example,

wage/price developments.

Let yi
t denote the i-th daily economic or financial variable at day t, which depends linearly

on xt and possibly also on various exogenous variables and/or lags of yi
t:

yi
t = ci + βixt + δi1w

1
t + ... + δikw

k
t + γi1y

i
t−Di

+ ... + γiny
i
t−nDi

+ ui
t, (2)

where the wt are exogenous variables and the ui
t are contemporaneously and serially uncor-

related innovations. Notice that we introduce lags of the dependent variable yi
t in multiples

of Di, where Di > 1 is a number linked to the frequency of the observed yi
t. (We will discuss

Di in detail in the next sub-section.) Modeling persistence only at the daily frequency would

be inadequate, as it would decay too quickly.

2.2 Missing Data, Stocks vs. Flows, and Temporal Aggregation

Recall that yi
t denotes the i-th variable on a daily time scale. But most variables, although

evolving daily, are not actually observed daily. Hence let ỹi
t denote the same variable observed

at a lower frequency (call it the “tilde frequency”). The relationship between ỹi
t and yi

t

depends crucially on whether yi
t is a stock or flow variable.

If yi
t is a stock variable measured at a non-daily tilde frequency, then the appropriate

treatment is straighforward, because stock variables are simply point-in-time snapshots.

At any time t, either yi
t is observed, in which case ỹi

t = yi
t, or it is not, in which case

ỹi
t = NA, where NA denotes missing data (“not available”). Hence we have the stock

variable measurement equation:

ỹi
t =

{
yi

t = ci + βixt + δi1w
1
t + ... + δikw

k
t + γi1y

i
t−Di

+ ... + γiny
i
t−nDi

+ ui
t if yi

t is observed

NA otherwise.

(3)

Now consider flow variables. Flow variables observed at non-daily tilde frequencies are
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intra-period sums of the corresponding daily values,

ỹi
t =


Di−1∑
j=0

yi
t−j if yi

t is observed

NA otherwise,

(4)

where Di is the number of days per observational period (e.g., Di=7 if yi
t is measured weekly).

Combining this fact with equation (2), we arrive at the flow variable measurement equation:

ỹi
t =



Di−1∑
j=0

ci + βi

Di−1∑
j=0

xi
t−j + δi1

Di−1∑
j=0

w1
t−j + ... + δik

Di−1∑
j=0

wk
t−j

+γi1

Di−1∑
j=0

yi
t−Di−j + ... + γin

Di−1∑
j=0

yi
t−nDi−j + u∗i

t

if yi
t is observed

NA otherwise,

(5)

where

Di−1∑
j=0

yi
t−Di−j is by definition the observed flow variable one period ago (ỹi

t−Di
), and u∗i

t

is the sum of the ui
t over the tilde period.

Discussion of two subtleties is in order. First, note that in general Di is time-varying,

as for example some months have 28 days, some have 29, some have 30, and some have 31.

To simplify the notation above, we ignored this, implicitly assuming that Di is fixed. In our

subsequent empirical implementation, however, we allow for time-varying Di.

Second, note that although u∗i
t follows a moving average process of order Di − 1 at the

daily frequency, it nevertheless remains white noise when observed at the tilde frequency,

due to the (Di− 1)-dependence of an MA(Di− 1) process. Hence we appropriately treat u∗i
t

as white noise in what follows, where var (u∗i
t ) = Di · var (ui

t) .

2.3 Trend

The exogenous variables wt are the key to handling trend. In particular, in the important

special case where the wt are simply deterministic polynomial trend terms (w1
t−j = t − j,

w2
t−j = (t− j)2 and so on) we have that

Di−1∑
j=0

[
ci + δi1 (t− j) + ... + δik (t− j)k

]
≡ c∗i + δ∗i1t + ... + δ∗ikt

k. (6)
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In the appendix we derive the mapping between the “starred” and “unstarred” c’s and δ’s

for cubic trends, which are sufficiently flexible for most macroeconomic data and of course

include linear and quadratic trends as special cases. Assembling the results, we have the

stock variable measurement equation

ỹi
t =

{
c∗i + βix

i
t + δ∗i1t + ... + δ∗ikt

k + γi1ỹ
i
t−Di

+ ... + γinỹ
i
t−nDi

+ u∗i
t if yi

t is observed

NA otherwise.
(7)

and the flow variable measurement equation,

ỹi
t =


c∗i + βi

Di−1∑
j=0

xi
t−j + δ∗i1t + ... + δ∗ikt

k + γi1ỹ
i
t−Di

+ ... + γinỹ
i
t−nDi

+ u∗i
t if yi

t is observed

NA otherwise.

(8)

This completes the specification of our model, which has a natural state space form, to

which we now turn.

3 State Space Representation, Signal Extraction, and

Estimation

Here we discuss our model from a state-space perspective, including filtering and estima-

tion. We avoid dwelling on standard issues, focusing instead on the nuances specific to

our framework, including missing data due to mixed-frequency modeling, high-dimensional

state vectors due to the presence of flow variables, and time-varying system matrices due to

varying lengths of months.

3.1 State Space Representation

Our model is trivially cast in state-space form as

yt = Ztαt + Γtwt + εt (9)

αt+1 = Tαt + Rηt (10)

εt ∼ (0, Ht) , ηt ∼ (0, Q) (11)

t = 1, ..., T ,
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where yt is an N ×1 vector of observed variables (subject of course to missing observations),

αt is an m × 1 vector of state variables, wt is a e × 1 vector of predetermined variables

containing a constant term (unity), k trend terms and N × n lagged dependent variables

(n for each of the N elements of the yt vector), εt and ηt are vectors of measurement and

transition shocks containing the ui
t and et, and T denotes the last time-series observation.

In general, the observed vector yt will have a very large number of missing values, reflect-

ing not only missing daily data due to holidays, but also, and much more importantly, the

fact that most variables are observed much less often than daily. Interestingly, the missing

data per se does not pose severe challenges: yt is simply littered with a large number of

NA values, and the corresponding system matrices are very sparse, but the Kalman filer

remains valid (appropriately modified, as we discuss below), and numerical implementations

may indeed be tuned to exploit the sparseness, as we do in our implementation.

In contrast, the presence of flow variables produces more significant complications, and

it is hard to imagine a serious business conditions indicator system without flow variables,

given that real output is itself a flow variable. Flow variables produce intrinsically high-

dimensional state vectors. In particular, as shown in equation (3), the flow variable mea-

surement equation contains xt and maxi{Di} − 1 lags of xt, producing a state vector of

dimension max{maxi{Di}, p}, in contrast to the p-dimensional state associated with a sys-

tem involving only stock variables. In realistic systems with data frequencies ranging from,

say, daily to quarterly, maxi{Di} ≈ 90.

There is a final nuance associated with our state-space system: several of the system

matrices are time-varying. In particular, although T,R and Q are constant, Zt, Γt and Ht

are not, because of the variation in the number of days across quarters and months (i.e., the

variation in Di across t). Nevertheless the Kalman filter remains valid.

3.2 Signal Extraction

With the model cast in state space form, and for given parameters, we use the Kalman

filter and smoother to obtain optimal extractions of the latent state of real activity. As

is standard for classical estimation, we initialize the Kalman filter using the unconditional

mean and covariance matrix of the state vector. We use the contemporaneous Kalman filter;

see Durbin and Koopman (2001) for details.

Let Yt ≡ {y1, ..., yt}, at|t ≡ E (αt|Yt), Pt|t = var (αt|Yt), at ≡ E (αt|Yt−1), and Pt =
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var (αt|Yt−1). Then the Kalman filter updating and prediction equations are

at|t = at + PtZ
′
tF

−1
t vt (12)

Pt|t = Pt − PtZ
′
tF

−1
t ZtP

′
t (13)

at+1 = Tat|t (14)

Pt+1 = TPt|tT
′ + RQR′, (15)

where

vt = yt − Ztat − Γtwt (16)

Ft = ZtPtZ
′
t + Ht, (17)

for t = 1, ..., T .

Crucially for us, the Kalman filter remains valid with missing data. If all elements of yt

are missing, we skip updating and the recursion becomes

at+1 = Tat (18)

Pt+1 = TPtT
′ + RQR. (19)

If some but not all elements of yt are missing, we replace the measurement equation with

y∗t = Z∗
t αt + Γ∗

t wt + ε∗t (20)

ε∗t ∼ N (0, H∗
t ) , (21)

where y∗t is of dimension N∗ < N , containing the elements of the yt vector that are observed.

The key insight is that y∗t and yt are linked by the transformation y∗t = Wtyt, where Wt is

a matrix whose N∗ rows are the rows of IN corresponding to the observed elements of yt.

Similarly, Z∗
t = WtZt, Γ∗

t = WtΓt, ε∗t = Wtεt and H∗
t = WtHtW

′
t . The Kalman filter works

exactly as described above, replacing yt, Zt and H with y∗t , Z∗
t and H∗

t . Similarly, after

transformation the Kalman smoother remains valid with missing data.

3.3 Estimation

Thus far we have assumed known system parameters, whereas they are of course unknown

in practice. As is well-known, however, the Kalman filter supplies all of the ingredients
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needed for evaluating the Gaussian pseudo log likelihood function via the prediction error

decomposition,

log L = −1

2

T∑
t=1

[
N log 2π +

(
log |Ft|+ v′tF

−1
t vt

)]
. (22)

In calculating the log likelihood, if all elements of yt are missing, the contribution of period t

to the likelihood is zero. When some elements of yt are observed, the contribution of period

t is
[
N∗ log 2π +

(
log |F ∗

t |+ v∗′t F ∗−1
t v∗t

)]
where N∗ is the number of observed variables, and

we obtain F ∗
t and v∗t by filtering the transformed y∗t system.

4 A Prototype Empirical Application

We now present a simple application involving the daily term premium, weekly initial jobless

claims, monthly employment and quarterly GDP. We describe in turn the data, the specific

variant of the model that we implement, subtleties of our estimation procedure, and our

empirical results.

4.1 Business Conditions Indicators

Our analysis covers the period from April 1, 1962 through February 20, 2007, which is 16,397

observations of daily data. (We use a seven-day week.)

We use four indicators. Moving from highest frequency to lowest frequency, the first

indicator is the yield curve term premium, defined as the difference between ten-year and

three-month Treasury yields. We measure the term premium daily; hence there are no

aggregation issues. We treat holidays and weekends as missing.

The second indicator is initial claims for unemployment insurance, a weekly flow variable

covering the seven-day period from Sunday to Saturday. We set the Saturday value to the

sum of the previous seven daily values, and we treat other days as missing.

The third indicator is employees on non-agricultural payrolls, a monthly stock variable.

We set the end-of-month value to the end-of-month daily value, and we treat other days as

missing.

The fourth and final indicator is real GDP, a quarterly flow variable. We set the end-

of-quarter value to the sum of daily values within the quarter, and we treat other days as

missing.

Several considerations guide our choice of variables. First, we want the variables chosen
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to illustrate the flexibility of our framework. Hence we choose four variables measured at four

different frequencies ranging from very high (daily) to very low (quarterly), and representing

both stocks (term premium, payroll employment) and flows (initial claims, GDP). Second, we

want our illustrative analysis to be credible, if not definitive. Although reasonable people can

(and will) disagree on the number and choice of indicators, our choices are easily defensible.

GDP needs no defense. Labor market variables like payroll employment and initial claims

are strongly cyclical and feature prominently in many coincident indexes. The Conference

Board’s composite coincident index, for example, also uses payroll employment. Finally, the

term premium is also strongly cyclical, as studied for example in Diebold, Rudebusch and

Aruoba (2006) and several of the papers they cite.

4.2 Model Implementation

In the development thus far we have allowed for general polynomial trend and general AR(p)

dynamics. In the prototype model that we now take to the data, we make two simplifying

assumptions that reduce the number of parameters to be estimated by numerical likelihood

optimization. First, we de-trend prior to fitting the model rather than estimating trend

parameters simultaneously with the others, and second, we use simple first-order dynamics

throughout. In future work we look forward to incorporating more flexible dynamics but, as

we show below, the framework appears quite encouraging even with simple AR(1) dynamics.

Hence latent business conditions xt follow zero-mean AR(1) process, as do the observed

variables at their observational frequencies. For weekly initial claims, monthly employment

and quarterly GDP, this simply means that the lagged values of these variables are elements

of the wt vector. We denote these by ỹ2
t−W , ỹ3

t−M and ỹ4
t−q, where W denotes the number

of days in a week, M denotes the number of days in a month and q denotes the number of

days in a quarter. (Once again, the notation in the paper assumes M and q are constant

over time, but in the implementation we adjust them according to the number of days in the

relevant month or quarter.)

For the term premium, on the other hand, we model the autocorrelation structure using

an AR(1) process for the measurement equation innovation, u1
t , instead of adding a lag of

the term premium in wt.
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The equations that define the model are


ỹ1

t

ỹ2
t

ỹ3
t

ỹ4
t


︸ ︷︷ ︸

yt

=



β1 β2 β3 β4

0 β2 0 β4

...
...

...
...

0 β2 0 β4

0 0 0 β4

...
...

...
...

0 0 0 β4 or 0

0 0 0 β4 or 0

0 0 0 β4 or 0

1 0 0 0



′

︸ ︷︷ ︸
Zt



xt

xt−1

...

xt−q̄−1

xt−q̄

u1
t


︸ ︷︷ ︸

αt

+


0 0 0

γ2 0 0

0 γ3 0

0 0 γ4


︸ ︷︷ ︸

Γt

 ỹ2
t−W

ỹ3
t−M

ỹ4
t−q


︸ ︷︷ ︸

wt

+


0

u∗2
t

u3
t

u∗4
t


︸ ︷︷ ︸

εt



xt+1

xt

...

xt−q̄

xt−q̄+1

u1
t+1


︸ ︷︷ ︸

αt+1

=



ρ 0 · · · 0 0 0

1 0 · · · 0 0 0

0 0 · · · 0 0 0

0 0 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 0 0 0

0 0 · · · 1 0 0

0 0 · · · 0 0 γ1


︸ ︷︷ ︸

T



xt

xt−1

...

xt−q̄−1

xt−q̄

u1
t


︸ ︷︷ ︸

αt

+



1 0

0 0
...

...

0 0

0 0

0 1


︸ ︷︷ ︸

R

[
et

ζt

]
︸ ︷︷ ︸

ηt

(23)

[
εt

ηt

]
∼ N

([
04×1

02×1

]
,

[
Ht 0

0 Q

])
, Ht =


0 0 0 0

0 σ∗2
2t 0 0

0 0 σ2
3 0

0 0 0 σ∗2
4t

 , Q =

[
1 0

0 σ2
1

]

where the notation corresponds to the system in Section 3 with N = 4, k = 3, m = 93, p = 1

and r = 2. We use the current factor and 91 lags in our state vector because the maximum

possible number of days in a quarter is 92, which we denote by q̄. (If there are q days in

a quarter, then on the last day of the quarter we need the current value and q − 1 lags.)

Also, in every quarter we adjust the number of non-zero elements in the fourth row of the

Zt matrix to reflect the number of days in that quarter.
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4.3 Estimation

The size of our estimation problem is substantial. We have 16,397 daily observations, and

even with de-trended data and first-order dynamics we have 93 state variables and 13 co-

efficients. Using a Kalman filter routine programmed in MATLAB, one evaluation of the

likelihood takes about 20 seconds. Maximization of the likelihood, however, may involve a

very large number of likelihood evaluations, so it’s crucial to explore the parameter space

in a sophisticated way. Throughout, we use a quasi-Newton algorithm with BFGS updating

of the inverse Hessian, using accurate start-up values for iteration. (Perhaps the methods

of Jungbacker and Koopman (2008) could be used to improve the speed of our gradient

evaluation, although we have not yet explored that avenue. Our real problem is the huge

sample size.)

We obtain our start-up values in two steps, as follows. In the first step, we use only daily

and stock variables, which drastically reduces the dimension of the state vector, resulting in

very fast estimation. This yields preliminary estimates of all measurement equation param-

eters for the daily and stock variables, and all transition equation parameters, as well as a

preliminary extraction of the factor, x̂t (via a pass of the Kalman smoother).

In the second step, we use the results of the first step to obtain startup values for the

remaining parameters, i.e., those in the flow variable measurement equations. We simply

regress the flow variables on the smoothed state extracted in the first step and take the

coefficients as our startup values.

Obviously in the model that we use in this paper, the variables that we use in the first

step are the daily term premium and monthly employment, and the variables that we use

in the second step are weekly initial claims and quarterly GDP. (Note that the same simple

two-step method could be applied equally easily in much larger models.) At the conclusion

of the second step we have startup values for all parameters, and we proceed to estimate

the full model’s parameters jointly, after which we obtain our “final” extraction of the latent

factor.

4.4 Results

Here we discuss a variety of aspects of our empirical results. To facilitate the discussion, we

first define some nomenclature to help us distinguish among models. We call our full four-

variable model GEIS (“GDP, Employment, Initial Claims, Slope”). Similarly, proceeding

to drop progressively more of the high-frequency indicators, we might consider GEI or GE
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models.

4.4.1 The Smoothed GEIS Real Activity Indicator

We start with our centerpiece, the extracted real activity indicator (factor). In Figure 1 we

plot the smoothed GEIS factor with NBER recessions shaded. (Because the NBER provides

only months of the turning points, we assume recessions start on the first day of the month

and end on the last day of the month.)

Several observations are in order. First, our real activity indicator broadly coheres with

the NBER chronology. There are, for example, no NBER recessions that are not also reflected

in our indicator. Of course there is nothing sacred about the NBER chronology, but it

nevertheless seems comforting that the two cohere. The single broad divergence is the mid

1960s episode, which the NBER views as a growth slowdown but we would view as a recession.

Second, if our real activity indicator broadly coheres with the NBER chronology, it never-

theless differs somewhat. In particular, it tends to indicate earlier turning points, especially

peaks. That is, when entering recessions our indicator tends to reach its peak and start

falling several weeks before the corresponding NBER peak. Similarly, when emerging from

recessions, our indicator tends to reach its trough and start rising before the corresponding

NBER trough. In the last two recessions, however, our indicator matches the NBER trough

very closely.

One can interpret our indicator’s tendency toward earlier-than-NBER peaks in at least

two ways. The NBER chronology may of course simply be inferior, tending to lag turning

points whereas ours does not. Alternatively, the NBER chronology may be accurate whereas

our index may actually have some lead, particularly as one of our component indicators is

the daily term premium, which is not only cyclical but may actually lead the cycle (e.g.,

Diebold, Rudebusch and Aruoba, 2006).

Third, our real activity indicator makes clear that there are important differences in

entering and exiting recessions, whereas the “0-1” NBER recession indicator can not. In

particular, our indicator consistently plunges at the onset of recessions, whereas its growth

when exiting recessions is sometimes brisk (e.g., 1973-75, 1982) and sometimes anemic (e.g.,

the well-known “jobless recoveries” of 1990-91 and 2001).

Fourth, and of crucial importance, our indicator is of course available at high frequency,

whereas the NBER chronology is available only monthly and with very long lags (often

several years). Hence our indicator is a useful ”nowcast,” whereas the NBER chronology is

not.
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4.4.2 Gains From High-Frequency Data I: Comparison of GE and GEI Factors

Typically, analyses similar to ours are done using monthly and/or quarterly data, as would

be the case in a two-variable GE (GDP, employment) model. To see what is gained by

inclusion of higher-frequency data, we now compare the real activity factors extracted from

a GE model and a GEI model (which incorporates weekly initial claims).

In Figure 2 we show the smoothed GEI factor, and for comparison we show a shaded

interval corresponding to the smoothed GE factor ± 1 s.e. The GEI factor is quite different,

often violating the ± 1 s.e. band, and indeed not infrequently violating a ± 2 s.e. band (not

shown) as well.

In Figure 3 we dig deeper, focusing on the times around the six NBER recessions: De-

cember 1969 - November 1970, November 1973 - March 1975, January 1980 - July 1980,

July 1981 - November 1982, July 1990 - March 1991 and March 2001 - November 2001.

We consider windows that start twelve months before peaks and end twelve months after

troughs. Within each window, we again show the smoothed GEI factor and a shaded interval

corresponding to the smoothed GE factor ± 1 s.e. Large differences are apparent.

In Figure 4 we move from smoothed to filtered real activity factors, again highlighting the

six NBER recessions. The filtered version is the one relevant in real time, and it highlights

another key contribution of the high-frequency information embedded in the GEI factor. In

particular, the filtered GEI factor evolves quite smoothly with the weekly information on

which it is in part based, whereas the filtered GE factor has much more of a discontinuous

“step function” look. Looking at the factors closely, the GE factor jumps at the end of every

month and then reverts towards to mean (of zero) while the GEI factor jumps every week

with the arrival of new Initial Claims data.

Finally, what of a comparison between the GEI factor and the GEIS factor, which in-

corporates the daily term structure slope? In this instance it turns out that, although

incorporating weekly data (moving from GE to GEI) was evidently very helpful, incorporat-

ing daily data (moving from GEI to GEIS) was not. That is, the GEI and GEIS factors are

almost identical. It is important to note, however, that we still need a daily state space setup

even though the highest-frequency data of value were weekly, to accommodate the variation

in weeks per month and weeks per quarter.

4.4.3 Gains From High-Frequency Data II: A Calibrated Simulation

Here we illustrate our methods in a simulation calibrated to the empirical results above. This

allows us to assess the efficacy of our framework in a controlled environment. In particular,
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in a simulation we know the true factor, so we can immediately determine whether and how

much we gain by incorporating high-frequency data, in terms of reduced factor extraction

error. In contrast, in empirical work such as that above, although we can see that the

extracted GE and GEI factors differ, we can not be certain that the GEI factor extraction

is more accurate, because we can never see the true factor, even ex post.

In our simulation we use the system and the parameters estimated previously. Using

those parameters, we generate forty years of “daily” data on all four variables, and then

we transform them to obtain the observed data. Specifically, we delete the weekends from

the daily variable and aggregate the daily observations over the week to obtain the observed

weekly (flow) variable. We also delete all the observations for the third (stock) variable except

for the end-of-the-month observations and sum the daily observations over the quarter to

get the fourth (flow) variable. Finally, using the simulated data we estimate the coefficients

and extract the factor, precisely as we did with the real data.

In the top panel of Figure 5 we show the true factor together with the smoothed factor

from the GE model. The two are of course related, but they often diverge noticeably and

systematically, for long periods. The correlation between the two is 0.72 and the mean

squared extraction error is 0.45. In the bottom panel of Figure 5 we show the true factor

together with the smoothed factor from the GEI model. The two are much more closely

related and indeed hard to distinguish. The correlation between the two is 0.98 and the mean

squared extraction error is 0.07. This exercise quite convincingly shows that incorporating

high-frequency data improves the accuracy of the extracted factor.

4.4.4 Real Time Performance

At any point T in real time, we simply use the time-T data vintage to extract the real

activity factor at time T and earlier, as in Corradi, Fernandez and Swanson (2007). As

time progresses, we re-estimate the system each period (or less frequently if desired for

convenience), always using the latest-vintage data to extract the real activity factor.

In Figure 6 we show what we call a “tentacle plot” for part of 2008, that is, a plot of

several series of real activity factors extracted using sequential vintages of 2008 data. The

tentacle plot contains six paths, extracted on April 4, June 12, June 28, July 19, August 9,

and August 30. The six paths show clearly that newly-arrived data can produce substantial

changes in optimal assessments of real activity. It is interesting to note, for example, that

the two assessments using August data vintages produce August values of the real activity

factor below the levels seen at the onset of both the 1990-91 and 2001 recessions, but still
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far from the levels seen at those recessions’ troughs, indicating not only recession, but also

that conditions would likely worsen before improving.

5 Summary and Concluding Remarks

We view this paper as providing both (1) a “call to action” for measuring macroeconomic

activity in real time, using a variety of stock and flow data observed at mixed frequencies,

potentially also including very high frequencies, and (2) a prototype empirical application,

illustrating the gains achieved by moving beyond the customary monthly data frequency.

Specifically, we have proposed a dynamic factor model that permits exactly optimal extrac-

tion of the latent state of macroeconomic activity, and we have illustrated it in a four-variable

empirical application with a daily base frequency, and in a parallel calibrated simulation.

We look forward to a variety of variations and extensions of our basic theme, including

but not limited to:

(1) Incorporation of indicators beyond macroeconomic and financial data. In particular,

it will be of interest to attempt inclusion of qualitative information such as headline news.

(2) Construction of a real time composite leading index (CLI). Thus far we have focused

only on construction of a composite coincident index (CCI), which is the more fundamental

problem, because a CLI is simply a forecast of a CCI. Explicit construction of a leading

index will nevertheless be of interest.

(3) Allowance for nonlinear regime-switching dynamics. The linear methods used in this

paper provide only a partial (linear) statistical distillation of the rich business cycle literature.

A more complete approach would incorporate the insight that expansions and contractions

may be probabilistically different regimes, separated by the “turning points” corresponding

to peaks and troughs, as emphasized for many decades in the business cycle literature and

rigorously embodied Hamilton’s (1989) Markov-switching model. Diebold and Rudebusch

(1996) and Kim and Nelson (1998) show that the linear and nonlinear traditions can be nat-

urally joined via dynamic factor modeling with a regime-switching factor. Such an approach

could be productively implemented in the present context, particularly if interest centers on

turning points, which are intrinsically well-defined only in regime-switching environments.

(4) Comparative assessment of experiences and results from “small data” approaches,

such as ours, vs. “big data” approaches. Although much professional attention has recently

turned to big data approaches, as for example in Forni, Hallin, Lippi and Reichlin (2000) and

Stock and Watson (2002), recent theoretical work by Boivin and Ng (2006) shows that bigger
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is not necessarily better. The matter is ultimately empirical, requiring detailed comparative

assessment. It would be of great interest, for example, to compare results from our approach

to those from the Altissimo et al. (2002) EuroCOIN approach, for the same economy and

time period. Such comparisons are very difficult, of course, because the “true” state of the

economy is never known, even ex post.

(5) Complete real-time analysis, recognizing that at any time T we have not only the

time-T data vintage, but also all earlier data vintages. That would permit incorporation

of the stochastic process of data revisions, as was attempted (in different contexts) in early

work such as Conrad and Corrado (1979) and Howrey (1984) and recent work such as Aruoba

(2008). Doing so in the rich dynamic multivariate environment of this paper is presently

infeasible, however, due to the large additional estimation burden that it would entail.

(6) Exploration of direct indicators of daily activity, such as debit card transactions data,

as in Galbraith and Tkacz (2007).

Indeed progress is already being made in work done subsequently to earlier drafts of this

paper, such as Camacho and Perez-Quiros (2008).
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Appendix: Trend Representations

Here we provide the mapping between the “unstarred” and “starred” c’s and δ’s in

equation (4) of the text, for cubic polynomial trend. Cubic trends are sufficiently flexible for

most macroeconomic data and of course include linear and quadratic trend as special cases.

The “unstarred” representation of third-order polynomial trend is

D−1∑
j=0

[
c + δ1 (t− j) + δ2 (t− j)2 + δ3 (t− j)3] ,

and the “starred” representation is c∗+δ∗1 (t)+δ∗2 (t)2+δ∗3 (t)3 . We seek the mapping between

(c, δ1, δ2, δ3) and (c∗, δ∗1, δ
∗
2, δ

∗
3) .

The requisite calulation is tedious but straightforward. The “unstarred” expression can

be expanded as

D−1∑
j=0

c + δ1

D−1∑
j=0

(t− j) + δ2

D−1∑
j=0

(t− j)2 + δ3

D−1∑
j=0

(t− j)3

= Dc + δ1

D−1∑
j=0

t− δ1

D−1∑
j=0

j + δ2

D−1∑
j=0

t2 + δ2

D−1∑
j=0

j2 − 2δ2

D−1∑
j=0

tj

+δ3

D−1∑
j=0

t3 − δ3

D−1∑
j=0

j3 − 3δ3

D−1∑
j=0

t2j + 3δ3

D−1∑
j=0

tj2

= Dc− δ1

D−1∑
j=0

j + δ2

D−1∑
j=0

j2 − δ3

D−1∑
j=0

j3 + t

[
Dδ1 − 2δ2

D−1∑
j=0

j + 3δ3

D−1∑
j=0

j2

]

+t2

[
Dδ2 − 3δ3

D−1∑
j=0

j

]
+ t3 (Dδ3) .

But note that

D−1∑
j=0

j =
D (D − 1)

2

D−1∑
j=0

j2 =
D (D − 1) (2D − 1)

6

D−1∑
j=0

j3 =

[
D (D − 1)

2

]2
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which yields

c∗ = Dc− δ1D (D − 1)

2
+

δ2D (D − 1) (2D − 1)

6
− δ3 [D (D − 1)]2

4

δ∗1 = Dδ1 − δ2D (D − 1) +
δ3D (D − 1) (2D − 1)

2

δ∗2 = Dδ2 −
3δ3D (D − 1)

2
δ∗3 = Dδ3.
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Figure 1
Smoothed Real Activity Factor, Full Model (GEIS)
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Smoothed Real Activity Factors: GE (Interval) and GEI (Point)
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Figure 3
Smoothed Real Activity Factors Around NBER Recessions

GE (Interval) and GEI (Point)
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Figure 4
Filtered Real Activity Factors Around NBER Recessions

GE (Thin) and GEI (Thick)
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